
J. Fluid Mech. (2015), vol. 782, pp. 430–454. c� Cambridge University Press 2015
doi:10.1017/jfm.2015.554

430

Exact coherent states and connections to

turbulent dynamics in minimal channel flow

Jae Sung Park

1
and Michael D. Graham

1,†
1Department of Chemical and Biological Engineering, University of Wisconsin-Madison,

Madison, WI 53706-1691, USA

(Received 12 January 2015; revised 14 September 2015; accepted 17 September 2015;
first published online 8 October 2015)

Several new families of nonlinear three-dimensional travelling wave solutions to
the Navier–Stokes equation, also known as exact coherent states, are computed for
Newtonian plane Poiseuille flow. The symmetries and streak/vortex structures are
reported and their possible connections to critical layer dynamics are examined.
While some of the solutions clearly display fluctuations that are localized around the
critical layer (the surface on which the streamwise velocity matches the wave speed of
the solution), for others this connection is not as clear. Dynamical trajectories along
unstable directions of the solutions are computed. Over certain ranges of Reynolds
number, two solution families are shown to lie on the basin boundary between
laminar and turbulent flow. Direct comparison of nonlinear travelling wave solutions
to turbulent flow in the same channel is presented. The state-space dynamics of the
turbulent flow is organized around one of the newly identified travelling wave families,
and in particular the lower-branch solutions of this family are closely approached
during transient excursions away from the dominant behaviour. These observations
provide a firm dynamical-systems foundation for prior observations that minimal
channel turbulence displays time intervals of ‘active’ turbulence punctuated by brief
periods of ‘hibernation’ (see, e.g., Xi & Graham, Phys. Rev. Lett., vol. 104, 2010,
218301). The hibernating intervals are approaches to lower-branch nonlinear travelling
waves. Representing these solutions on a Prandtl–von Kármán plot illustrates how
their bulk flow properties are related to those of Newtonian turbulence as well
as the universal asymptotic state called maximum drag reduction (MDR) found in
viscoelastic turbulent flow. In particular, the lower- and upper-branch solutions of the
family around which the minimal channel dynamics is organized appear to approach
the MDR asymptote and the classical Newtonian result respectively, in terms of both
bulk velocity and mean velocity profile.

Key words: nonlinear dynamical systems, nonlinear instability, transition to turbulence

1. Introduction

The understanding of the nature of near-wall turbulence has been greatly advanced
by recent applications of dynamical-systems theory to turbulent flow (Kawahara,
Uhlmann & van Veen 2012). In particular, over the past two decades, the discovery of
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three-dimensional fully nonlinear travelling wave (TW) solutions to the Navier–Stokes
equations has enabled a priori study of self-sustained near-wall coherent structures
that resemble in many ways the transient structures observed in fully turbulent
flows (Hof et al. 2004). These solutions, also denoted as exact coherent states
(Waleffe 2001) (ECSs), are steady states in a reference frame translating at a constant
streamwise speed. They have been found numerically in all canonical wall-bounded
geometries for turbulent flows (plane Couette and Poiseuille, pipe and boundary
layer) (Nagata 1990; Clever & Busse 1997; Nagata 1997; Waleffe 1998, 2001, 2003;
Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Gibson, Halcrow & Cvitanovic
2008, 2009; Schneider, Gibson & Burke 2010; Duguet et al. 2012; Blackburn,
Hall & Sherwin 2013). Most solutions that have been found to date are spatially
extended, but recent studies show the existence of spatially localized travelling
solutions that closely resemble turbulent puffs in the pipe flow geometry (Avila et al.
2013; Chantry, Willis & Kerswell 2014) or turbulent spots in the plane Couette and
Poiseuille geometries (Tillmark & Alfredsson 1992; Barkley & Tuckerman 2005;
Lemoult, Aider & Wesfreid 2013; Brand & Gibson 2014). Other ECSs or other types
of invariant solutions to the governing equation have also been found numerically.
Periodic or relative periodic orbits were computed for plane Couette (Kawahara &
Kida 2001; Viswanath 2007; Cvitanović & Gibson 2010) and Poiseuille flow (Toh
& Itano 2003), pipe flow (Duguet, Willis & Kerswell 2008) and two-dimensional
Kolmogorov flow (Chandler & Kerswell 2013). Taken together, these solutions seem
to form at least in part the dynamical skeleton underlying the chaotic dynamics of
turbulent flow (Gibson et al. 2008; Kawahara et al. 2012). In the present work, we
report and analyse several new families of such solutions in the plane Poiseuille
geometry and further develop the understanding of the relationship between these
solutions and the dynamics of turbulence.

We focus here on plane Poiseuille (channel) flow of a Newtonian fluid with dynamic
viscosity µ, density ⇢ and kinematic viscosity ⌫ = µ/⇢ in a channel of half-height h.
The characteristic inner scales are the friction velocity u⌧ = (⌧w/⇢)1/2 and the near-wall
length scale or wall unit �⌫ = ⌫/u⌧ , where ⌧w is the time- and area-averaged wall shear
stress. As usual, quantities non-dimensionalized by these scales are denoted with a
superscript ‘+’. The friction Reynolds number is defined as Re⌧ = u⌧ h/⌫ = h/�⌫ .

Exact coherent states primarily arise in pairs via a saddle–node bifurcation at
a particular Reynolds number. At the bifurcation, the pair of solutions emerges at
finite amplitude; we refer to each such pair as a solution family. Figure 1 illustrates
a bifurcation diagram of solution amplitude versus Reynolds number for one such
family (the ‘P4’ family described below), using the maximum over y of the root mean
square wall-normal velocity fluctuations v021/2

normalized by the friction velocity u⌧ as
a measure of solution amplitude. An overbar indicates averaging over the streamwise
and spanwise directions. The so-called lower-branch (LB) solution of each pair
denotes a low-drag state due to its lower maximum wall-normal velocity fluctuation
compared with its corresponding upper-branch (UB) solution. (Additional solution
branches can and do bifurcate off these primary states – the ‘P2’ solutions described
below are one such example.) In general, these solutions have a spatial structure in
the form of low-speed streaks that are wavy in the streamwise direction, straddled
by counter-rotating streamwise-aligned vortices: that is, they have the same basic
qualitative structure as near-wall turbulence.

The basic self-sustaining process underlying these structures has been qualitatively
described by Waleffe (1997). More recently, it has been observed for Couette flow
that at least one LB solution family has a structure that consists of streaks, rolls and
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FIGURE 1. (Colour online) A bifurcation diagram for one solution family of travelling
waves found in the present study (labelled P4 below), where the maximum in the root
mean square wall-normal fluctuations is shown against Reynolds number.

a weak streamwise-varying wave that develops a critical layer – i.e. its structure is
localized around the surface where the streamwise velocity equals the wave speed of
the ECS (Wang, Gibson & Waleffe 2007). In the classical linear stability theory of
parallel shear flows, a critical layer is a planar surface around which normal-mode
perturbations localize (Drazin & Reid 1981), while here the critical layer is a curved
surface in 3D. Wang et al. (2007) presented a scaling analysis suggesting that the
wavy fluctuations should be localized in a region of thickness O(Re�1/3), and showed
that this scaling was followed by their numerical solutions. In fact, they found that the
flow structures at Re = 50 000 and Re = 3000 were virtually identical modulo an Re1/3

rescaling of the direction normal to the critical layer surface. Hall and coworkers (Hall
& Sherwin 2010; Blackburn et al. 2013) used a mixture of asymptotics and numerics
to show, again for Couette flow, that the critical layer fluctuations couple back to the
streamwise rolls to generate the nonlinear self-sustaining process that supports ECSs.
In their formulation, this process is a version of wave–vortex interaction. They note
that ‘remarkable’ agreement is obtained between the high-Re asymptotics and the
numerical results down to Reynolds numbers of order 103 (Hall & Sherwin 2010) –
we emphasize this point because this is the Reynolds number range of the present
results. Other recent and interesting work on critical layers and ECSs is found in
Viswanath (2009), Deguchi, Hall & Walton (2013), Deguchi & Hall (2014) and
Gibson & Brand (2014) . Because of the clear importance of critical layer dynamics
for at least some families of nonlinear TWs even at low Re, § 3.2 of the present
work focuses on this topic.

For plane Poiseuille flow, the first known families of TW solutions were obtained by
a homotopy continuation from ECSs in plane Couette flow. Solutions were sought in
a travelling reference frame using a Newton–Raphson method with the wave speed as
an unknown (Waleffe 1998, 2001, 2003; Nagata & Deguchi 2013; Gibson & Brand
2014). Solutions have been also computed by a multiple shooting method (Itano &
Toh 2001). It is worth noting that the lowest bifurcation point or onset Reynolds
number for these solutions, Re ⇡ 977 or Re⌧ ⇡ 44.3, is in good quantitative agreement
with the Reynolds number for transition to turbulence observed in an experiment in
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this geometry (Carlson, Widnall & Peeters 1982). In fact, the solutions survive slightly
below the critical Reynolds number for turbulence onset. Furthermore, the optimal
spanwise wavelength 105.5�⌫ at the onset of TW solutions is remarkably matched
well with that of experimentally and numerically observed near-wall streak spacing
of 80–120�⌫ (Smith & Metzler 1983). In the present work, several more families of
TWs are found, which seem to have a closer connection to turbulent dynamics than
the ones found earlier.

An important issue regarding ECSs is their connection to the laminar–turbulent
boundary – the boundary in state space between the basins of attraction of the
laminar and turbulent states. Some of the LB ECSs found in turbulent shear flows
are embedded on this boundary (Itano & Toh 2001; Skufca, Yorke & Eckhardt
2006; Kerswell & Tutty 2007; Schneider, Eckhardt & Yorke 2007; Wang et al. 2007;
Duguet et al. 2008; Viswanath & Cvitanovic 2009). In particular, such solutions that
have only one unstable direction are called edge states (Skufca et al. 2006). Because
such solutions are somehow the weakest most marginal form of self-sustaining
turbulence, the structure of the basin boundary and the dynamical trajectories that
lie on it are likely to play an important role in understanding the dynamics of
transition to turbulence or onset of turbulence in wall-bounded shear flows. Recently,
an experimental observation has been reported for the existence of edge states in pipe
flow (de Lozar et al. 2012).

Returning to the dynamical-systems point of view, ECSs are periodic (or more
complicated but still invariant) orbits in state space, while the time evolution of
a turbulent flow is a dynamical trajectory wandering around them. An important
question is how closely the turbulent trajectories approach these invariant states.
For plane Couette flow, Gibson et al. (2008) visualized a clear illustration of this
dynamical-systems viewpoint of turbulence by projecting the trajectory onto a set
of orthonormal basis states constructed with earlier ECSs. Kerswell & Tutty (2007)
also showed a clear visual illustration for a pipe flow. In addition to the state-space
visualization, they proposed quantitative measurements of the distance between a
given instant on the turbulent trajectory and ECSs, and suggested that ECSs are
visited for approximately 10 % of the time in turbulent pipe flow. For a channel flow,
the connections have yet to be fully made and will be investigated in the present
study.

One important motivation for gaining a better understanding of turbulence is the
possibility of reducing drag. In this context, the LB ECSs are attractive due to
their low-drag flow features, and a natural question is whether it might be possible
to somehow steer turbulent trajectories towards these states. One very successful
approach to turbulent drag reduction is to add small amounts of rheologically active
additives such as flexible long-chain polymers into a liquid (White & Mungal 2008;
Graham 2014). The most dramatic effect of the polymer additives on turbulence
occurs in the near-wall region, weakening the turbulent eddies in this region. The
key feature of these polymer solutions in drag reduction is the existence of the
so-called maximum drag reduction (MDR) phenomenon, at which very high levels
of drag reduction are achieved by polymer additives, first identified by Virk (1975).
The most intriguing observation for MDR is its universal mean velocity profile, the
experimentally observed upper limit on the amount of drag reduction that can be
achieved with polymer additives, also known as the Virk asymptote (Virk 1975).
This asymptotic limit is insensitive to changes in the polymer solution such as
concentration, molecular weight or polymer type. Thus, for a given situation, the
maximum amount of drag reduction achievable with polymer additives is invariant.
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Li et al. (Li, Xi & Graham 2006; Li & Graham 2007) have investigated the effects
of polymer additives on the channel flow ECSs discovered by Waleffe (2001, 2003).
For this solution family, as the level of viscoelasticity is increased, the Reynolds
number for the solutions to come into existence increases. The primary effect of
viscoelasticity on these ECSs is the weakening of the streamwise vortices. Other
effects are also seen in changes in the budgets of turbulent kinetic energy, Reynolds
stress and mean shear stress. All of these effects show, at least at low levels of drag
reduction, that the basic mechanism of drag reduction by polymers can be clearly
elucidated by examining the impact of polymers on TW solutions. Nevertheless,
these studies were limited to a single solution family and to relatively low Reynolds
numbers and levels of viscoelasticity.

Another set of recent studies, while not directly focused on ECSs, sheds some light
on the state-space dynamics of Newtonian and viscoelastic channel flow. Xi & Graham
(2010a, 2012b) performed direct numerical simulation (DNS) studies of minimal
channel flow at low Reynolds numbers, finding that in Newtonian flow and for low
to intermediate values of the Weissenberg number, the flow cycles stochastically
between ‘active’ intervals, with strong streamwise vortices and three-dimensionality,
velocity and a velocity profile near the von-Kármán profile, and ‘hibernating intervals’,
with very weak turbulence and a mean velocity profile approaching the Virk MDR
profile. In viscoelastic flow, the polymers stretch during the active intervals, working
against the streamwise vortices and shortening the duration of these intervals, while
during the hibernating intervals the flow kinematics is very gentle and the polymers
relax, only to begin stretching again at the beginning of the next active interval.
Thus, as the degree of viscoelasticity (Weissenberg number) increases, the overall
dynamics looks increasingly ‘Virk-like’ as the active intervals contribute a decreasing
time duration to the overall statistics. A simple theory is developed, based on
exponential stretching of polymers during active intervals and the idea that these
intervals cannot persist once the polymer stress reaches a threshold value. This theory
predicts the Weissenberg-number dependence of the duration of the active intervals in
good agreement with the simulations. At high Weissenberg number, the hibernation
intervals themselves are substantially altered and stabilized by viscoelasticity (Wang
et al. 2014), through mechanisms that are not yet understood. In addition, at low
Reynolds number in the minimal channel flow geometry, hibernating turbulence is
closely related to an edge state in which the Virk profile also arises, not just as a
transient, but in the time-averaged velocity (Xi & Graham 2012a), even in Newtonian
flow. A comprehensive overview of these studies is provided in Graham (2014). The
connection between active and hibernating turbulence and UB and LB Newtonian
ECSs will be solidified in the present work.

There are other indications as well that the Virk asymptote is not just universal
for drag reduction by polymers but also arises in Newtonian turbulence. Dubief et al.
(2011) observed in a simulation of Newtonian boundary layer flow that at a spatial
position just upstream of where vortices and turbulence spots form, the mean velocity
profile looks strikingly similar to the Virk MDR profile. Furthermore, the Virk
MDR profile is also observed in a smoothed version of Newtonian plane Poiseuille
flow in which spanwise length scales of the flow field below a specified size are
suppressed (Kerswell, Obrist & Schmid 2003). Finally, experimental observations of
a Newtonian turbulent boundary layer flow subjected to spanwise wall oscillations
display a mean velocity profile that, for y+ . 30, closely resembles the Virk MDR
profile (Bandyopadhyay 2006).

In this paper, we present five new families of nonlinear travelling wave solutions
in Newtonian plane Poiseuille flow, and examine their spatiotemporal structure and
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connections to the dynamics of turbulent flow in the same geometry. In particular, we
find a family whose UB and LB solutions have mean velocity profiles that resemble
Newtonian turbulent (von Kármán) and MDR (Virk) profiles and we show the
relationship between those solutions and trajectories of turbulent flows. The problem
formulation and solution methodologies are presented in § 2. Section 3.1 presents an
overview of mean flow properties and spatial structures of the solutions, while § 3.2
illustrates the relation between the new TWs and critical layer dynamics. Sections 3.3
and 3.4 describe the connections between the TWs, the laminar–turbulent boundary
and turbulent dynamics. Section 4 presents conclusions.

2. Formulation and solution approach

We consider an incompressible Newtonian fluid in the plane Poiseuille geometry,
driven with a constant mass flux Q. The characteristic length and velocity scales
are the half-channel height h and the laminar centreline velocity Uc = (3/4)Q/h for
the same mass flux respectively. With these characteristic scales, the Navier–Stokes
equations in non-dimensional form are

r · u = 0, (2.1)
@u
@t

+ u · ru = �rp + 1
Rec

r2u. (2.2)

Here, we define the laminar equivalent Reynolds number for the given mass flux as
Rec = Uch/⌫. It should be noted that Reb = Ubh/⌫ = (2/3)Rec, where Ub is the bulk
velocity. The x, y and z coordinates are aligned with the streamwise, wall-normal
and spanwise directions respectively. Periodic boundary conditions are imposed in the
x and z directions with fundamental periods Lx and Lz, and no-slip conditions are
imposed at the walls y = ±1. The computational domain is thus [0, Lx] ⇥ [�1, 1] ⇥
[0, Lz] or simply [Lx, 2, Lz]. The velocities are u, v and w in the x, y and z directions,
and the velocity at point (x, y, z) and time t is expressed as u = [u, v, w](x, y, z, t).

Computation of nonlinear TWs is performed using the open source code ChannelFlow
written by Gibson (2012), with use of a Newton–Krylov-hookstep algorithm
(Viswanath 2007). A numerical grid system is generated on Nx ⇥ Ny ⇥ Nz (in x,
y and z) meshes, where a Fourier–Chebyshev–Fourier spectral spatial discretization
is applied to all variables. A typical resolution used is (Nx, Ny, Nz) = (48, 81, 48). A
TW solution has the following form:

u(x, y, z, t) = u(x � cxt, y, z), (2.3)

where cx is a constant wave speed in the streamwise direction. ChannelFlow seeks
solutions of a more general case:

� f t1(u) � u = 0. (2.4)

Here, f t1 is the time-t1 forward time integration of the Navier–Stokes equations
computed by a DNS, i.e. f t1(u(t)) = u(t + t1), and � is a symmetry operator to the
flow field such that

� [u, v, w](x, y, z) = [sxu, syv, szw](sxx + axLx, syy, szz + azLz). (2.5)

Here, we are following notations for flow symmetries introduced by Gibson et al.
(2008). The symmetry operator � consists of two sets of parameters: sx, sy, sz for
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rotation–reflection symmetries (values are either 1 or �1) and ax, az for streamwise
and spanwise translations (values are real). The symmetry operator � in (2.4)
describes the translation symmetry of the TW solution after time t1. To compute
TW solutions propagating in the streamwise direction, the only unknown symmetry
parameter is the streamwise shift ax (= cxt1/Lx), because the spanwise shift az is set
to zero, the other symmetry parameters are inherent to the solution and the time shift
t1 is chosen a priori. The parameter ax is determined as part of the solution process.

More generally, the symmetries of fluid states can be expressed with the symmetry
operator (2.5). That is, u = �u for certain values of the symmetry parameters. The
symmetry operator � is then expressed in different characters to describe different
symmetries of fluid states: ⌧ for the spatial phase shifts, � for the reflections and
s for the shift-reflection or shift-rotation. The four flow symmetries that arise in the
present study are

�y[u, v, w](x, y, z) = [u, �v, w](x, �y, z), (2.6)
�z[u, v, w](x, y, z) = [u, v, �w](x, y, �z), (2.7)

⌧xz[u, v, w](x, y, z) = [u, v, w]
✓

x + Lx

2
, y, z + Lz

2

◆
, (2.8)

s1[u, v, w](x, y, z) = [u, v, �w]
✓

x + Lx

2
, y, �z

◆
. (2.9)

The �y and �z symmetries correspond to reflections with respect to the midplanes
in the y and z directions respectively. The ⌧xz and s1 symmetries denote half-domain
translations in the x and z directions and a shift-reflection symmetry respectively. In
particular, the s1 symmetry is related to the sinusoidal instability of streaks (Waleffe
1997), which is also called the fundamental sinuous mode.

Finding solutions to (2.4) requires good initial guesses. We generate these using
instantaneous velocity fields from DNS of turbulent trajectories that have been
symmetrized with respect to the midplane of the domain, y = 0 (i.e. all initial guesses
satisfy u = �yu). In particular, since hibernating turbulence has been hypothesized
to be closely related to travelling wave solutions (Xi & Graham 2012a), we chose
initial guesses from instants with a lower wall shear stress than the mean value. The
time shift t1 is arbitrary. A relatively large value provides substantial improvement
to the rate of convergence of the Krylov subspace methods that are used in our
computation, but larger values of t1 require longer to compute f t1 . We chose t1 = 20
in that it seems to balance these two aspects well. The initial guess for the streamwise
shift ax is determined by approximating the wave speed as the bulk velocity of the
symmetrized initial velocity field. Appropriate symmetries are enforced during the
time-t1 time integration and the search procedure. To solve (2.4) a Krylov subspace
method is used to solve the linear systems arising at each Newton step. For better
convergence, a trust-region limitation to the magnitude of the Newton steps or a hook
step within a Krylov subspace is computed for the optimal Newton step. The Newton
iteration is repeated until an accuracy of O(10�15) is reached, where the accuracy is
the residual of k� f t1(u) � uk, using the L2 norm

kgk =


1
2LxLz

Z Lz

0

Z 1

�1

Z Lx

0
g · g dx dy dz

�1/2

. (2.10)

It should be noted that the ChannelFlow code calculates this residual. A detailed
description of the solution algorithm and DNS can be found in Gibson et al. (2008,
2009) and Viswanath (2007, 2009).
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TW Rec Re⌧ Lx Lz cx Symmetries

P1 1315.96 58.95 p p 0.73 �y, �z, ⌧xz
P2 1270.98 59.88 p p 0.71 �y
P3 682.57 43.20 2p p 0.62 �y, ⌧xz, s1
P4 1400 67.32 p p/2 0.75 �y, �z
P4-SB 3070 88.70 2p p 0.78 �y, �z, ⌧xz
P5 2744.95 99.02 p p/2 0.78 �y, �z

TABLE 1. Scales and symmetries of TW solutions at their saddle–node bifurcation points.
The wave speed is normalized by the laminar centreline velocity. It should be noted that
the bifurcation points for P2 and the P4 subharmonic branch (SB) correspond to their
minima due to the discovery of only one branch.

3. Results and discussion

3.1. Travelling wave families: bifurcation diagram, mean profiles and
overall structures

We computed five families of nonlinear TW solutions in plane Poiseuille flow, which
we have labelled P1 to P5, in domains of three different sizes: [p, 2, p], [2p, 2, p]
and [p, 2, p/2]. For the same flow geometry, the previous studies of Nagata &
Deguchi (2013) and Gibson & Brand (2014) used the domain of [2p, 2, p] and Toh
& Itano (2003) used the domain of [p, 2, 0.4p]. The minimum spanwise domain size
used here is approximately 95�⌫ , corresponding to the length scales of the optimal
spanwise wavelength for ECSs (Waleffe 2003) and of the near-wall streak spacing
of approximately 100�⌫ (Smith & Metzler 1983). This minimum spanwise length
scale is also within the range of the critical channel widths approximately 85–110
wall units used for the minimal flow unit studies (Jimenez & Moin 1991). Table 1
presents scales and symmetries of the solutions at their bifurcation points. Since only
one solution branch is found for P2, the lowest Re solution is presented. Because we
imposed the �y symmetry on initial guesses, all solutions exhibit this �y symmetry; P2
has only this symmetry. The half-period translations in the streamwise and spanwise
directions, ⌧xz, are found for P1 and P3. The shift-reflect symmetry s1 responsible for
the fundamental sinuous mode is found for P3.

The bifurcation diagram for these solution families is shown in figure 2(a).
The solutions are plotted using the friction Reynolds number versus the laminar
equivalent Reynolds number. For each solution family, a solution with higher Re⌧ is
a UB solution corresponding to high drag, while its counterpart is an LB solution.
For comparison, Newtonian turbulence and laminar flow are also drawn. Another
representation of the bifurcation diagram, a Prandtl–von Kármán plot, is shown in
figure 2(b). This form is often used to represent drag reduction characteristics in
wall-bounded turbulent flows. The bulk velocities U+

b are plotted as a function of the
friction Reynolds number along with curves for Newtonian turbulence, laminar flow
and Virk MDR. The curve for the Virk MDR is generated using its universal mean
velocity profile (Virk 1975). We elaborate below on the solutions with respect to the
Prandtl–von Kármán plot. In this representation, a ‘lower-branch’ solution is above
the ‘upper branch’, because the former has higher bulk velocity for the same wall
shear stress than the latter. With the exception of the LB solutions of P1 and P3,
the maximum Re at which a solution is shown on the bifurcation diagram represents
the highest Re at which a converged solution could be found. Obtaining solutions at
higher Re will require further refinements in techniques for solving (2.4).
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FIGURE 2. (Colour online) (a) A bifurcation diagram for five families of TW solutions
in terms of the Reynolds number Rec = Uch/⌫ and friction Reynolds number Re⌧ =
u⌧ h/⌫. The curves for Newtonian turbulence and laminar flows are shown. For P4, solid
symbols correspond to solutions computed by an SB. (b) A Prandtl–von Kármán plot for a
bifurcation diagram. The average velocities as a function of the friction Reynolds number
are shown along with curves for Newtonian turbulence, laminar flow and the Virk MDR.
(c) Only the P4 solution family is shown. (d) A comparison of P1 and P3 to earlier
solutions of Waleffe (2001), Nagata & Deguchi (2013) and Gibson & Brand (2014) in
the same geometry.

The LBs of P1 and P3 become very close and parallel to the laminar solution as
the Reynolds number increases. Their closeness to the laminar state indicates that they
are very-low-drag states. These LB solutions have very weak spatial variations and
Reynolds number dependence and have been successfully continued up to Re⌧ ⇡ 300
(corresponding to Rec ⇡ 40 000). Regarding the UBs of the solution families, in the
range where we have computed it, P1 has a similar level of drag (i.e. a similar bulk
velocity for a given Re⌧ ) to Newtonian turbulence. The P3 UB, however, shows higher
drag than Newtonian turbulence, displaying the highest drag level among the solutions
found in the present study. The P2 solution branch appears to bifurcate off P1, a result
that is confirmed below when we see that P2 has a broken �z symmetry. The P5
solution family forms a closed loop (isola).

Let us now focus on the P4 solution family, which shows very intriguing behaviour
with regard to Newtonian and viscoelastic turbulence. Figure 2(c) shows only the
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P4 solution family. Consider the UB (low-velocity) solution at the upper range of
convergence Re⌧ ⇡ 130. This solution branch has a mean velocity very close to that
of Newtonian turbulence (the black dashed curve). As Re decreases along this branch,
the solution remains close to the Newtonian turbulence curve until it undergoes a
turning point at Re⌧ =67.32, beyond which the LB appears to approach the Virk MDR
curve. This solution branch turns around again at Re⌧ = 88.7, forming another LB
solution (which we call LB2). As we decrease the Reynolds number, the new branch
reaches another bifurcation point at Re⌧ = 55.63, and we denote the solution beyond
this point as UB2. Thus, there are three bifurcation points for the P4 solution family.
Interestingly, the bulk velocities at the bifurcation points at Re⌧ = 55.63 and 67.32
are remarkably close to the Newtonian turbulence value, while the third bifurcation
point at Re⌧ = 88.7 is close to the Virk MDR value. Finally, above the turning point
at Re⌧ = 88.7, a subharmonic – spatiotemporal period doubling – branch (SB) arises,
which has doubled fundamental spatial periods in the x and z directions compared
with the P4 solution family (i.e. Lx becomes 2p and Lz becomes p), while the wave
speed remains constant. Thus, at any point in the domain the temporal period of the
velocity, as measured in the laboratory frame, doubles. The subharmonic solutions
are indicated by solid symbols. This solution closely follows the MDR curve until
Re⌧ ⇡ 105, deviating from and then returning to it as Re increases further.

Prior to proceeding to figure 2(d), it is worth mentioning the linear stability of the
solutions. The leading eigenvalues of the solutions are computed in their symmetric
subspace with Arnoldi iteration (Viswanath 2007). The P1, P3 and P5 LB solutions
have a single real unstable eigenvalue, while the P4 LB (P4-LB) solution has two
real unstable eigenvalues. The P4-LB2 solution has three real unstable eigenvalues
and the P4 SB (P4-SB) solution has three real and three complex conjugate unstable
eigenvalues. Turning from the P4-LB to the P4-UB (or from P4-LB2 to P4-UB2),
one real unstable eigenvalue goes complex immediately in a Takens–Bogdanov
bifurcation (Guckenheimer & Holmes 1983), at which an eigenvalue associated with
a saddle–node bifurcation collides with another eigenvalue. Therefore, just beyond
their respective turning points, P4-UB and P4-UB2 have one real and one complex
conjugate pair and two real and one complex conjugate pair of unstable eigenvalues
respectively. The P1, P3 and P5 solutions also experience the Takens–Bogdanov
bifurcation after crossing the LB to the UB. Interestingly, this behaviour has also
been observed near turning points of pipe flow TWs (Pringle, Duguet & Kerswell
2009; Mellibovsky & Eckhardt 2011) and thus seems to be rather generic for TWs
in shear flows.

Figure 2(d) compares P1 and P3 with earlier TW solutions discovered by Waleffe
(2001), Nagata & Deguchi (2013) and Gibson & Brand (2014) in the same geometry.
The curves for the Waleffe and Nagata and Deguchi solutions are generated from
figure 5 of Nagata & Deguchi (2013), where the optimal wavelengths were used.
Gibson and Brand’s two solutions, named TW1 and TW2 in their paper, have the
same wavelengths as P3. The solution of Nagata and Deguchi, called MS-S in
their paper, possesses �y, �z and s1 symmetries, and the Waleffe solution lacks the
�z symmetry compared with the MS-S solution. The TW1 solution has the same
symmetries as P1, while the �y symmetry is lost in TW2. The bifurcation points
of the P3, Waleffe and MS-S solutions are very close to each other. As shown, the
P3-UB appears to be the highest-drag state. It should be noted that the Waleffe, MS-S
and TW1 solutions were obtained by continuation from plane Couette to Poiseuille
conditions, but TW2 was obtained in a similar manner to an edge tracking method
using a velocity field from DNS as an initial guess. To the best of our knowledge,
solutions similar to P4 and P5 have not previously been found.
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FIGURE 3. (Colour online) Wave speeds for the TWs as a function of the Reynolds
number in (a) outer units and (b) inner units. In (a), the wave speeds are normalized by
the laminar centreline velocity and the dashed line represents the laminar bulk velocity.

Figure 3(a,b) shows the wave speed cx of the solutions as a function of the
Reynolds number in outer and inner units. In general, the wave speed follows the
same trend as the bulk velocity: in a given solution family, an LB solution propagates
faster than a UB solution. In outer units in figure 3(a), the laminar bulk velocity
is plotted with a dashed line. Most of the solutions have a larger wave speed than
the laminar bulk velocity, indicating that they propagate forward when viewed in
a reference frame moving at the laminar bulk velocity. The wave speeds of the P1
and P3 LB solutions appear to become constant with increasing Reynolds number,
while those of their UB solutions decrease drastically. When plotted in inner units,
the wave speed behaviour shows almost the same shape as the bulk velocity plot in
figure 2.

We now turn our attention to the mean velocity profiles U+
m (y+). Figure 4(a) shows

these for P1, P2 and P3. For comparison, we also plot the von Kármán log-law
U+

m (y+) = 2.5 ln y+ + 5.5 profile of Newtonian turbulence and the Virk log-law
U+

m (y+) = 11.7 ln y+ � 17.0 that approximates the mean velocity profile in the MDR
regime. As expected from the average velocity results in figure 2(b), the LB velocity
profiles for P1 and P3 are well above the Virk MDR profile for Re⌧ > 80 and very
close to the parabolic laminar profile. The highest-drag solution for P3-UB shows a
mean velocity profile well below the von Kármán log-law profile. The velocity profile
for P2 shows a similar character to the P1-UB and P3-UB profiles.

In figure 4(b), the mean velocity profiles for P5 are shown at its minimum and
maximum Reynolds numbers, and at Re⌧ ⇡ 104. In particular, the LB velocity profile
at Re⌧ = 104.51 very closely approaches the Virk MDR log-law in the range 15 <
y+ < 45.

Figure 4(c) shows mean velocity profiles for P4. Starting from its first bifurcation
point at Re⌧ = 67.32, the UB and LB profiles seem to approach towards two distinct
limits, the von Kármán and Virk MDR profiles respectively, as the Reynolds number is
increased. In particular, the LB profile at Re⌧ = 88.38 very closely approaches the Virk
MDR log-law profile over a relatively wide range, 15 < y+ < 70. This LB profile is
very similar to the conditionally sampled DNS velocity profile and the experimentally
observed profile for Newtonian hibernating turbulence (Xi & Graham 2012b; Whalley
et al. 2014). Meanwhile, the UB profile lies very close to the experimentally observed
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FIGURE 4. (Colour online) Mean velocity profiles for (a) P1, P2 and P3, (b) P5 and (c)
P4, in comparison to the log-laws for Newtonian turbulence and Virk MDR. (d) Mean
profiles of the Reynolds shear stress for the P4 solution family. The dot-dashed line is a
time-average profile for long DNS trajectories.

mean profile of Newtonian turbulent flows and approaches the von Kármán log-law
profile at large y+, as does active turbulence. The SB profile is also presented for
Re⌧ = 100.66, showing a similar shape to the LB. Hence, the UB, LB and SB of the
P4 solution family may represent an envelope in state space encompassed by the mean
profiles of both the Virk MDR and the classical Newtonian turbulence.

For the P4 solution family, we plot Reynolds shear stress profiles in figure 4(d), in
comparison to the time-average Newtonian profile for long DNS trajectories. As the
Reynolds number is increased, the Reynolds shear stress for LB solutions decreases,
while the UB profile increases. Compared with the time-average Newtonian profile at
Re⌧ ⇡ 86, the reduction in the LB solution is substantial. Interestingly, the UB profile
is slightly higher compared with the magnitudes of the Newtonian profile in y+ < 30,
but it almost collapses onto the Newtonian profile for y+ > 45.

Now we examine the streak structures, as represented by the contours of the
streamwise velocity fluctuations in the x–z plane at y = �0.5; these are shown in
figure 5. Except for P2, LB solutions are presented. The low-speed and high-speed
streaks are denoted by negative (blue) and positive (red) fluctuations respectively. A
subharmonic sinucose mode (Waleffe 1997), which is a combination of sinusoidal
for the low-speed streak and a varicose mode for the high-speed streak, is identified
for P1, P3 and P5. A fundamental sinuous mode is observed for the P2 solution
(figure 5b), while P4 exhibits a fundamental varicose mode (figure 5d). From a flow
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FIGURE 5. (Colour online) Contours of streamwise velocity fluctuation in the x–z plane
at y = �0.5 for (a) P1, (b) P2, (c) P3, (d) P4 at Rec = 1800 and (e) P5 at Rec = 3600.
Lower-branch solutions are presented except for P2, for which there is only one branch.
Blue and red indicate low- and high-speed streaks respectively.

symmetry point of view, the �z symmetry is clearly seen for P1, P4 and P5, whereas
this symmetry is broken for P2 and P3. The ⌧xz symmetry for P1 and P3 is also
identified in figure 5(a,c).

To clearly illustrate the subharmonic bifurcation arising on the P4-LB around Rec =
3070, we plot in figure 6(a,b) the wall-normal velocities on the x–z plane of solutions
at Rec = 2750 and 3800. The fundamental spatial periods of the P4-LB solution are
Lx =p and Lz =p/2; figure 6(a) shows two periods of this solution in each direction –
the unit cell is the solid-outlined box at the lower left. In the SB solution, figure 6(b),
mirror symmetry with respect to the z direction midplane (dashed line) of the unit
cell of P4 is broken, even though the �z symmetry still holds for its own (larger)
fundamental domain. In addition, the SB solution has a broken discrete (half-domain
shift) translation symmetry in both the x and z directions: the solid-outlined box is not
same as the solution in p < x < 2p and 0 < z < p/2 or in 0 < x < p and p/2 < z < p.
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FIGURE 6. (Colour online) (a) The P4-LB solution at Rec = 2750 (two periods in x and
z are shown) and (b) the SB solution at Rec = 3800. Colour contours of the wall-normal
velocity in the x–z plane at y = �0.5 are shown. The solid-outlined box at the lower left
shows the size of the domain in which the P4 solutions are found. The SB solution has
a broken mirror symmetry about the midplane of this box in the z direction (dashed line),
as well as a broken discrete translation symmetry in both the x and z directions – the
solution in p < x < 2p is shifted by p in the z direction from the solution in 0 < x < p.

The streak structure of a flow is closely related to the streamwise vortical structure.
Figure 7 shows contours of swirling strength �ci, the imaginary part of the complex
conjugate eigenvalues of the velocity gradient tensor (Zhou et al. 1999), in the bottom
half of the channel. The contours represent 2/3 of the maximum swirling strength for
each solution, which is given in the caption. In a given solution family, LB solutions
have weaker vortex strength than UB solutions. We also depict the critical layer
surface, where the local streamwise velocity equals the wave speed, u(x, y, z, t) = cx
(Maslowe 1986; Hall & Sherwin 2010). The P1- and P3-LB solutions, which have
the subharmonic sinucose mode, show similar vortical structures. The vortex cores
appear to expand between just above critical layer and the channel centre, whereas
the vortex cores of the P1- and P3-UB solutions are located very close to the critical
layer. The fundamental sinuous mode of P2 displays staggered vortices, which are
also located close to the critical layer. The fundamental varicose mode of the P4-LB
and -UB solutions displays different inclination angles of the vortex legs with respect
to the wall: the vortex legs of the LB and UB solutions are inclined by approximately
20 and 40 degrees to the wall respectively. The vortex cores are also located around
the critical layer. This vortical structure – which has the same symmetry as a hairpin
but does not display a ‘head’ – is also observed for other TW solutions in the same
geometry (Gibson & Brand 2014) and plane Couette flow (Itano & Generalis 2009;
Deguchi & Nagata 2010).
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FIGURE 7. (Colour online) Vortical structures of the TW solutions as illustrated by the
swirling strength �ci: (a) LB and (b) UB solutions for P1, (c) P2 solution, (d) LB and (e)
UB solutions for P3, (f ) LB and (g) UB solutions for P4, (h) LB and (i) UB solutions for
P5; P5 is shown at Rec = 3600, all others at Rec = 1800. Only the bottom half-channel
is shown due to the mirror symmetry with respect to the channel centre. The dark red
tubes are isosurfaces at 2/3 of the maximum swirling strength and the transparent blue
isosurfaces indicate critical layer surfaces where the local streamwise velocity matches the
wave speed. The maximum swirling strengths are (a) 0.09, (b) 0.17, (c) 0.17, (d) 0.06,
(e) 0.61, (f ) 0.30, (g) 0.79, (h) 0.16 and (i) 0.23.

3.2. Travelling wave structure and critical layers
As described in the introduction, prior work has addressed the structure and
mechanism of nonlinear TWs in the context of nonlinear critical layer dynamics,
and in particular has noted the role that streamwise-wavy structures localized near
the critical layer play in the self-sustaining process of at least one family of ECSs
(Wang et al. 2007; Hall & Sherwin 2010). Therefore, it is of interest to illustrate
the channel flow ECSs found here in relation to the critical layer position. In order
to do so, in figure 8 we calculate velocity deviations u(x = xc, y, z, 0) � U(y, z) in
the y–z plane of the P1, P3 and P4 LB and UB solutions along with the critical
layer position (black thick line), where u(x = xc, y, z, 0) = cx. Here, U(y, z) is the
streamwise-averaged streamwise velocity (not the streamwise- and spanwise-averaged
velocity Um(y)). As the velocity deviation varies along the streamwise direction, a
location xc in the streamwise direction is chosen so that the distinguishing features of
the deviation are best illustrated. The full time dependence of these structures is shown
in supplementary movies 1–7 available at http://dx.doi.org/10.1017/jfm.2015.554. The
P1 and P3 LB solutions exhibit relatively strong deviations near the channel centre,
as shown in figure 8(a,c) (and see supplementary movies 1 and 3), from which
observation we may call them ‘core modes’. In particular, the P3 solution shows

http://dx.doi.org/10.1017/jfm.2015.554
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FIGURE 8. (Colour online) Contours of streamwise velocity deviations u(x = xc, y, z, t) �
U(y, z) in the y–z plane, where U(y, z) is the streamwise-averaged streamwise velocity. The
streamwise location xc is chosen to illustrate the distinguishing features of the deviation.
The flow fields shown are (a) LB and (b) UB solutions for P1, (c) LB and (d) UB
solutions for P3, (e) LB, (f ) UB and (g) SB solutions for P4. Except for the SB solution,
which is shown at Rec = 3600, all solutions are at Rec = 1800. The black line represents
the critical layer in the y–z plane at x = xc.

well-localized deviations near the channel centre. Upper-branch solutions exhibit
stronger deviations throughout the channel height compared with LB solutions. In
both cases, however, the fluctuations seem to be bounded between the top and bottom
critical layers (also see accompanying online movies 2 and 4 in the supplementary
material for figure 8(b) P1-UB and (d) P3-UB respectively).

The P4 solution shows a different structure. Figure 8(e–g) (and supplemental movies
5–7) shows the streamwise velocity deviations for its LB and UB solutions at Rec =
1800 and for an SB solution at Rec = 3600. The deviations of the LB and SB solutions
are highly localized very close to the critical layer, consistent with the Couette flow
ECS results of Wang et al. (2007) and Hall & Sherwin (2010). For the UB solutions,
while strong deviations are observed across much of the channel, they are clearly
organized by the critical layer. The clear organization of deviations around the critical
layer suggests a connection to the critical layer dynamics, based on which this solution
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family may be called a ‘critical layer mode’. As seen in the vortical structures in
figure 7(h,i), the structure of P5 is also strongest around the critical layer.

This distinction between core modes and critical layer modes does not seem to have
been previously identified. The LB Couette (Wang et al. 2007; Hall & Sherwin 2010;
Blackburn et al. 2013) and pipe (Viswanath 2009) flow TWs studied previously would
be classified as ‘critical layer’ rather than ‘core’ modes, and the mechanistic studies
of Hall & Sherwin (2010) and Blackburn et al. (2013) are focused on critical layer
modes.

In addition to movies for streamwise velocity deviations, there are additional
accompanying online movies (8–17) in the supplementary material for the P1–P5
TW structures. These are shown in the y–z plane, where the streamwise velocity is
represented by colour contours, wall-normal and spanwise velocities are shown by
arrows and the critical layer is shown as a black curve.

3.3. Exact coherent states on the laminar–turbulent boundary
Some of the LB TW solutions in wall-bounded turbulent flows are embedded in the
laminar–turbulent boundary (Skufca et al. 2006; Wang et al. 2007). If such solutions
have only one unstable direction (Skufca et al. 2006), which indicates that they
are stable with respect to perturbations on the boundary, they are edge states. By
combining linear stability analysis of the nonlinear TW families with direct time
integration of initial conditions perturbed along unstable directions of the TWs, we
have determined whether the solutions live on the basic boundary and whether they
are edge states. Specifically, an initial condition for a trajectory is generated by
addition of a small perturbation along an unstable eigenfunction to an LB solution.
Both positive and negative perturbations are considered, and if there is an unstable
direction for which the trajectory starting on one side of the LB solution develops
into turbulence, while the other decays directly to the laminar state, then the solution
lives on the basin boundary. If, additionally, there is only one unstable eigenvalue,
then the TW is attracting in all other directions besides its unstable one and is thus
an edge state.

Figure 9(a) shows dynamical trajectories along the unstable directions for the P3-
and P4-LB solutions at Rec = 1800 projected onto the plane of energy dissipation rate
(D) and energy input rate (I),

D = 1
2LxLz

Z Lz

0

Z 1

�1

Z Lx

0
(|ru|2 + |rv|2 + |rw|2) dx dy dz, (3.1)

I = 1
2Lz

Z Lz

0

Z 1

�1
(pu|x=0 � pu|x=Lx) dy dz. (3.2)

Both values are normalized by their laminar values such that the laminar state is at
(1, 1). It should be recalled that the fundamental domain size is different between P3
and P4: Lx = 2p and Lz = p for P3 and Lx = p and Lz = p/2 for P4. In both cases,
one perturbation (the one that increases I and D) leads to turbulence and the other to
laminar flow, indicating that these TWs are on the basin boundary for turbulent flow
in their respective domains. Even though there are multiple unstable eigenvalues for
the P4-LB and -SB, only one (real) unstable eigenvalue gives the aforementioned two
types of trajectories of perturbations. Figure 9(b) shows the results of this analysis
for the entire bifurcation diagram – the solutions shown in grey are not on the basin
boundary while the others are. We find that only P3 and P4 display parameter ranges
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FIGURE 9. (Colour online) (a) Time evolutions in the energy input rate and dissipation
rate for DNS trajectories starting from nonlinear TWs P3 (E) and P4 (}) perturbed along
an unstable eigendirection at Rec = 1800. The solid and open symbols correspond to LB
and UB states respectively. Along trajectories, the dot spacing is 1t = 2. The laminar state
is at (1, 1). The dashed line represents D = I. (b) Bifurcation diagram with solutions on
the basin boundary shown in colour or darker symbols.

where they are on the boundary. For P3 this range is 50 . Re⌧ . 123 (1200 . Rec .
5000). For P4, both LB and SB solutions are found to lie on the basin boundary for
their respective domains. The ranges are 69 . Re⌧ . 88.7 (1600 . Rec . 3070) for
P4-LB, 61.Re⌧ .88.7 (1400.Rec .3070) for P4-LB2 and 88.9.Re⌧ .107 (3080.
Rec . 4000) for P4-UB. Furthermore, since it is found that the P3-LB solutions have
only one unstable eigenvalue in the symmetric subspace, they are indeed edge states
in that space. Even though there is only one eigenfunction that gives rise to an escape
scenario from the basin boundary for the P4-LB solutions, they have multiple unstable
eigenvalues so are not edge states.

3.4. Connections between TW solutions and turbulent trajectories
One motivation for studying nonlinear TWs in shear flows is the idea that these
states form the state-space skeleton of the turbulent dynamics. In this section, we
address this issue, examining how closely the turbulent trajectories approach the TW
solutions. We focus on the domain Lx ⇥ Ly ⇥ Lz = p ⇥ 2 ⇥ p/2, the same box size as
the P4 solution family. We choose Rec = 1800 (Re⌧ = 85) and perform simulations at
constant mass flux. In contrast to the TW computations, these turbulence simulations
are performed without imposing any symmetries on the flow. Comparisons are made
with TWs that have the same Rec. Two methods of comparison are used: the first
examines the probability distribution function for the instantaneous mean velocity
profile and the second projects the state-space dynamics into three dimensions
corresponding to physically meaningful averaged quantities.

Figure 10(a,b) shows the probability density functions (PDFs), plotted on a
logarithmic scale, for the mean velocity profiles at each wall-normal position
y (figure 10a) or y⇤ (figure 10b) in DNS based on outer units and ‘⇤’-scaling
(instantaneous inner scales) respectively. The PDF is normalized so that the integral
over the whole PDF equals 1. Using outer scaling (non-time-dependent scaling), it
is difficult to compare a DNS trajectory to TW solutions because each TW has a
different friction velocity. However, as highlighted by previous studies (Xi & Graham
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scaling and (b) ‘⇤’ scaling (inner units based on instantaneous area-averaged wall shear
stress). The black line is the time-averaged DNS velocity profile. A logarithmic scale is
used, with blue indicating vanishing probability.

2012b; Agostini & Leschziner 2014), the ‘⇤’-scaling, which leads all profiles to
collapse to the same curve near the wall, is the proper one to use for instantaneous
quantities with which a TW solution can be directly compared with an instantaneous
flow field. Here, we used DNS results for 40 000 time units to compute PDFs.
According to Xi & Graham (2012b) and our calculations, approximately 8–9 % of
the total simulation time is spent near the Virk-like state. Thus, the data are sufficient
to capture approaches to the Virk log-law in PDFs. In figure 10(a) we see that
near the wall, the DNS velocity profile is very nearly bracketed between the P4-UB
and -LB solutions, while deviations from these solutions become more prevalent
near the centre. The same trend is apparent in the plot in instantaneous inner units,
figure 10(b), which emphasizes the strong similarities in the near-wall behaviour as
well as the transient approaches of the DNS mean velocity profile towards the P4-LB
solutions. It appears that for y⇤ . 30 the P4 TWs form an approximate envelope for
the PDF of the DNS mean velocity profile. Furthermore, relatively high probability
regions (red) are observed around the von Kármán log-law and P4-UB solution.
Interestingly, there is also a slightly high probability region (yellow) close to the
P4-LB solutions.

Now we visualize the approach of turbulent trajectories to TW solutions in state
space. To do so, we project turbulent trajectories onto a three-dimensional space
using the following quantities: disturbance kinetic energy (KE), energy dissipation
rate (D), and area-averaged instantaneous wall shear stress normalized by its mean
value (⌧w/⌧̄w). The disturbance kinetic energy is defined as follows:

KE = 1
LxLz

Z Lz

0

Z 0

�1

Z Lx

0

1
2
(u � ulam)2 dx dy dz, (3.3)

where ulam is the parabolic laminar profile. Figure 11 shows a turbulent trajectory and
the P4 TWs projected onto these three quantities, as well as the joint PDF of KE
and D at the bottom of the figure. It should be noted that all quantities are only
calculated for the bottom half of the domain. The dynamical trajectory spends most of
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its time within one core region of state space, which we can identify with normal or
‘active’ turbulence; the P4-UB solution is in this region, as also seen on the joint PDF.
The trajectory occasionally escapes, however, from the active region, approaching the
P4-LB solutions. During these excursions, some trajectories pass through the vicinity
of P4-LB, approaching P4-LB2 very closely. When returning to the active region,
the path strongly overshoots the core of these regions and might be considered as
a turbulent burst. Similar observations on the relationship between invariant states
and bursting events have been made for Couette flow (Kawahara & Kida 2001) and
channel flow (Toh & Itano 2003). The closest visits to P4-LB, P4-LB2 and P4-UB
are labelled as points (i)–(iii) respectively. The mean velocity profiles at these three
instants and for the P4 TWs are plotted in figure 12(a). The profiles for instants (i)
and (ii) appear to be very similar to the P4-LB and P4-LB2 solutions respectively,
while instant (iii) has a similar profile to the P4-UB and the von Kármán mean profile.
Flow structures for instants (i) and (iii) are visualized in figure 12(b,c), where to
facilitate comparison we use the same vortex strength and critical layer isosurfaces as
in figure 7(f ) P4-LB and (g) P4-UB. It should be noted that flow structure for instant
(ii) is very similar to that for instant (i), but shows weaker vortex motion. There is
substantial similarity between the vortical and critical layer structures of the snapshots
and the TWs. The critical layer for instant (i) shows weak streamwise variation and
the vortex motions are seen to be localized around the critical layer, as also seen
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FIGURE 12. (Colour online) (a) Instantaneous mean velocity profiles for instants (i),
(ii) and (iii), where the closest approaches to P4-LB, P4-LB2 and P4-UB solutions are
observed respectively. (b–c) Flow structures at instants (i) and (iii).

for P4-LB. Similarly, instant (iii) and P4-UB resemble one another, particularly with
regard to their inclined vortical structures.

To further address the relationship between the DNS trajectories and TWs, we
calculated a norm of the difference between a DNS velocity field u and a TW.
Taking into account the arbitrary phase in x and z of the velocity fields, this distance,
which we denote �, is calculated as follows:

�(t) = min
06x0<Lx

min
06z0<Lz

ku(x + x0, y, z + z0, t) � uTW(x, y, z)k, (3.4)

where x0 and z0 are phaseshifts in the x and z directions respectively. Time series
of �(t) computed for the P4 solution family are shown in figure 13. The distances
between P4-LB and instant (i), P4-LB2 and instant (ii), and P4-UB and instant (iii)
are 5.7 ⇥ 10�3, 6.2 ⇥ 10�3 and 3.5 ⇥ 10�3 respectively. These values are comparable
to distances at the points of the closest visits to TWs for pipe flow (Viswanath &
Cvitanovic 2009) and to equilibria for Couette flow (Halcrow et al. 2009), which are
of order O(10�3). Thus, the closeness of turbulent trajectories to P4 TWs is identified
using full velocity fields for minimal channel flow.

The state-space picture that clearly shows close approaches to multiple TW
solutions and the closeness to the TW solutions using full velocity fields has yet
to be reported in the channel flow literature. Furthermore, it must be emphasized that
these multiple TWs belong to the same solution family.

These results confirm the hypothesis posed in prior work (Xi & Graham 2010b,a,
2012b; Graham 2014) that the ‘active’ and ‘hibernating’ phases of minimal channel
turbulence correspond to time intervals where the trajectory is close to UB and LB
TWs respectively. Finally, returning to the bifurcation diagram, we recall that there
are also two UB P4 solutions, but we were only successful in computing one of them
over a broad range of Rec. We might speculate that if the second UB solution could
be found at the Rec at which we have performed the DNS it would also lie in the
core active turbulence region.
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FIGURE 13. (Colour online) Distances � between a DNS trajectory and P4 TW solutions.
Instants (i), (ii) and (iii) are the closest visits to P4-LB, P4-LB2 and P4-UB respectively,
indicated in figure 11.

4. Conclusion

We have computed five new families of nonlinear TW solutions, denoted P1–P5, in
Newtonian plane Poiseuille flow. As the Reynolds number is increased, the P1- and
P3-LB solutions become close and parallel to the laminar solution branch, indicating
that they are very-low-drag states. The P2 solution branch results from a symmetry-
breaking bifurcation from P1. The P5 solution family forms a closed loop (isola).
Most interestingly, the P4 solution family shows very intriguing behaviour in terms
of mean properties as the Reynolds number is increased. The average velocities of
the LB and UB appear to approach the Virk MDR profile observed in viscoelastic
turbulence and the classical Newtonian (von Kármán) profiles respectively. The former
observation adds to the set of results in which mean velocity profiles close to the
Virk profile are found in Newtonian flow (Kerswell et al. 2003; Bandyopadhyay 2006;
Xi & Graham 2010a,b; Dubief et al. 2011; Xi & Graham 2012a,b). On the LB, a
subharmonic bifurcation arises around Re⌧ ⇡ 90, giving rise to spatiotemporal period
doubling.

The structures and symmetries of the various solution families are described. The
fluctuations of the P1 and P3 solutions are largest near the channel centre, so we
have denoted them as core modes, while the P4 and P5 solutions display fluctuations
localized around the critical layer, so we call them critical layer modes. Over a
range of Reynolds numbers the P3- and P4-LB solutions are embedded in the
laminar–turbulent boundary.

Finally, we addressed the issue of how closely the turbulent trajectories approach
the TW solutions, focusing on the P4 family. In prior work (Xi & Graham 2010b,a,
2012b; Graham 2014) it was hypothesized that ‘active’ and ‘hibernating’ phases of
minimal channel turbulence correspond to time intervals where the trajectory is close
to UB and LB TWs respectively. The present results corroborate this hypothesis.
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The turbulent trajectory spends most of its time within a region of state space that
can be identified as normal or ‘active’ turbulence; the P4-UB solution is in this
region, while the hibernating intervals are approaches to the P4-LB solutions.
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