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Direct numerical simulations (DNS) of plane Poiseuille flow are performed in an
extended domain at friction Reynolds numbers ranging from 70 to 100. In minimal
domains, turbulence in this Reynolds number range displays substantial intermittency
that is associated with chaotic movement of turbulent trajectories between lower and
upper branch invariant solutions known as exact coherent states (ECS). The present work
aims to address the relationship between temporal dynamics in minimal channels and
spatiotemporal dynamics in extended domains. Both temporal and spatial analyses of the
turbulent velocity fields are performed, the latter using image analysis methods. These
analyses partition the flow characteristics into low-, intermediate- and high-drag classes;
we present the differences between flows fields in these classes in terms of simple quantities
like mean velocity, wall shear stress, and flow structures. The temporal and spatial analysis
methods, although completely independent of one another, yield very similar results for
both low- and high-drag regions. In particular, the conditional mean profiles in regions
of low drag closely resemble those found in low-drag temporal intervals in the minimal
channel. Finally, we address the possibility of similarities between turbulence and exact
coherent states in two ways: (1) comparing wall shear stress in localized patches the
size of minimal channels in large domains with those in actual minimal channel and
(2) comparing conditional mean velocity profiles during low-drag events with mean profiles
from lower branch ECS. These analyses show that both the local near-wall flow structure
in the low-drag patches of the large domain and the conditional mean profiles in the
region y+ � 30 resemble those of a lower branch minimal domain ECS. In summary, the
results presented here suggest that spatiotemporal intermittency in transitional channel flow
turbulence is related to temporal intermittency, and by extension to the state space structure,
in the minimal channel.
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I. INTRODUCTION

The past 20 years or so have seen rapid advances in understanding transition to turbulence [1–5].
These advances build on the mathematical foundation of dynamical systems theory and the discovery
of nontrivial invariant solutions to the Navier-Stokes equations (NSE) for the canonical shear flows:
plane Couette flow [6–17], plane Poiseuille flow [18–22], and pipe flow [2,3,23–27]. These solutions,
sometimes called exact coherent states (ECS) [18], take the form of steady states, nonlinear traveling
waves, relative periodic orbits, and edge states (these are solutions that live on the boundary in state
space of the basins of attraction of the laminar and turbulent states, respectively). Most of these states
have been found in so-called minimal flow units (MFU) or minimal channel geometries, i.e., they are
spatially periodic in the unbounded dimensions of the domain with periods that roughly correspond
to the smallest length scales at which turbulence can persist in the domain of interest. The spatial
structure of these solutions qualitatively matches that of near-wall turbulence: a mean shear flow with
streamwise-modulated streamwise vortices that generate low- and high-speed streaks. Additionally,
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direct numerical simulations of turbulence in MFUs indicates that at low (transitional) Reynolds
numbers, the turbulent trajectories in these geometries are organized at least in part around the
ECS [5,10,28]. It is important to note that some highly localized invariant solutions, which display
nontrivial flow only over a small region of an extended flow domain, while the remainder of the
domain remains laminar, have been found as well [29–31]. These solutions are highly reminiscent
of the turbulent spots or puffs that are a common feature of turbulence near transition [32].

More broadly, the spatiotemporal dynamics of turbulence in extended domains contains many
open issues even in the transitional Reynolds number regime. One of these is the extent to which
dynamics in extended domains is related to dynamics in minimal ones. Aiming to shed some light
on these issues, the present work focuses on the plane channel flow geometry, using direct numerical
simulations and temporal and spatial sampling techniques to characterize intervals and regions of
high and low turbulence activity. Specifically, our results are consistent with the hypothesis that
temporal intermittency observed in minimal channels becomes spatiotemporal in extended domains
and that main features of the ECS and minimal channel turbulence results are found in localized
regions in the extended domain.

A number of research groups have computed exact coherent states for the channel flow geometry
[19,20,22,28,33,34]. For the most part, these solutions arise in pairs at saddle-node bifurcations; the
upper branch (UB) solution of each pair has larger velocity fluctuations and higher drag compared
to the lower branch (LB) solution. Park and Graham [28] found a family of channel flow ECS in the
minimal channel geometry, which they denoted “P4”, that has particularly intriguing behavior. The
mean velocity profile of the upper branch state approaches the Prandtl–von Kármán log-law while that
of the lower branch approaches a form generally associated with turbulence in viscoelastic polymer
solutions, the so-called Virk profile [35]. This profile is a good approximation of experimental
and computational observations in the so-called maximum drag reduction (MDR) regime. This ECS
result adds to the set of observations in which mean velocity profiles close to the Virk profile are found
in Newtonian flow [36–42]. Notwithstanding this intriguing similarity to MDR, the present work
addresses only Newtonian flow. The flow structures of the upper and lower branch solutions are
very different—the upper branch has strong streamwise vortices and wavy streaks representing
strong fluctuations while the lower branch has weak vortices and almost streamwise-invariant
streaks.

Direct numerical simulations (DNS) of turbulence in the same minimal geometry at Reynolds
numbers near transition have been found by a number of researchers [39,42,43] to exhibit temporal
intermittency between high- and low-drag intervals: Xi and Graham [39] denoted these as active
and hibernating, respectively. Park and Graham [28] found that this behavior is a reflection of the
organization of the turbulent dynamics around the P4 solution family. Specifically, as illustrated in
Fig. 1(a), at friction Reynolds number Reτ = 85 the trajectory spends most of its time orbiting in the
vicinity of the upper branch solution, displaying relatively high drag and a mean profile near the von
Kármán profile, but occasionally takes excursions that approach the lower branch solutions (there are
actually two of these because the lower branch turns back on itself) and thus exhibit low drag. Over
part of the Reynolds number regime the lower branch states lie on the basin boundary between the
laminar and turbulent attractors in the minimal domain, so the approach of the turbulent dynamics
to these states implies an approach to the laminar-turbulent basin boundary. At higher Reynolds
number, these excursions become increasingly rare, as we describe below. Mean velocity profiles of
some upper and lower branch traveling wave solutions from the P4 family are plotted in Fig. 1(b).
As noted above, the upper branch velocity profiles nearly collapse with the classical Newtonian
(von Kármán) profile, while the lower branch velocity profiles approach the Virk MDR. Park and
Graham [28] showed that near the wall (y+ � 30), instantaneous velocity profiles from minimal
channel DNS are very nearly bracketed between the UB and LB solutions, while deviations from
these solutions are observed near the center of the channel. Thus, the P4 traveling waves appear to
form an approximate envelope for the DNS mean velocity profiles for y+ � 30. This is important as
these similarities in the near-wall behavior suggest that the turbulent dynamics in minimal channels
is organized at least in part around these traveling wave solutions.
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FIG. 1. (a) State-space visualization of DNS trajectories in a minimal channel turbulent flow [Lx × Ly ×
Lz = π × 2 × π/2, Rec = 1800 (Reτ = 85), constant mass flux], projected onto three dimensions: disturbance
kinetic energy (KE), energy dissipation rate (D), and normalized instantaneous wall shear stress (τw/τ̄w) [28].
The gray line indicates the turbulent trajectory, to which black dots are attached at intervals of 1l/Uc. The
joint probability density of KE and D is shown at the bottom of the figure. The labeled symbols (�) are P4
solutions. Points (i), (ii), and (iii) are the closest approaches to P4-LB1, P4-LB2, and P4-UB1, respectively. All
quantities are calculated only for the bottom half of the channel. (b) Mean velocity profiles of lower (LB) and
upper branch (UB) traveling waves of the P4 family. These solutions are also being used for comparison with
DNS (Sec. III B 2).

A natural question is how closely these minimal channel observations are related to the
phenomenon of laminar-turbulent intermittency in the transitional Reynolds number regime for
spatially extended flows (i.e., experimentally realized flows where no artificial periodicities are
present). Manneville [44] provides an excellent overview of this phenomenon; the basic observation
is that the transitional Reynolds number regime, at a given point in the domain the flow alternates
randomly between states with weak and strong fluctuations. Pipe flow is the most well-studied
case. Here laminar-turbulent intermittency is first observed as localized turbulent patches, known
as puffs, surrounded by laminar flow upstream and downstream of it [45,46]. These puffs have
complex behavior, involving growth and splitting [3,47], and many aspects of the transition regime
can be captured using reaction-diffusion-advection models involving evolving fronts that separate
spatial regions of turbulent and laminar motions [48–50], with the turbulent regions taking over the
whole domain once the Reynolds number is suffiently high. Nevertheless, even at Reynolds numbers
traditionally regarded as above the transition regime, substantial spatiotemporal fluctuations in
turbulence activity persist [51]. In the case of boundary layer flows, turbulent spots are surrounded
by laminar flow [52]. These spots spread in all directions as they convect downstream [53,54],
culminating in a fully turbulent boundary layer. In channel flow, the focus of the present work,
experimental studies by Carlson et al. [55] reveal the presence of arrowhead-shaped turbulent spots
with streamwise streaks trailing from the rear of the spot. The front of the spot moves faster than
the rear end, resulting in the expansion of the spot before it eventually splits into two. Within a spot,
strong turbulent fluctuations occur, which are preceded by oblique waves that surround the spot.
Other studies [56–63] observed elongated near-wall streaks forming stripe patterns. These patterns
are oriented obliquely relative to the main flow direction. Flow is highly turbulent near the center
region of the stripes, and around the stripes are regions of streamwise streaks that are relatively less
turbulent. As the Reynolds number is increased, the fluctuation intensity in the less turbulent regions
increases along both streamwise and spanwise directions, the stripiness in the flow structures start to
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vanish, and eventually the flow becomes uniformly turbulent, i.e., any apparent large-scale structures
are absent.

To differentiate between regions of turbulent flow from nonturbulent flow, conditional sampling
techniques have been used by many researchers. Volino et al. [64] conducted transitional boundary
layer experiments in a wind tunnel and measured velocities at several locations in the streamwise
and wall-normal directions. They calculated intermittency factors using flow quantities such as
streamwise velocity and Reynolds shear stress, and found that the mean velocity profiles differed
significantly between the turbulent and nonturbulent regimes. They also showed that the wall-normal
velocity fluctuations and Reynolds shear stress in the turbulent spots are significantly higher and
the skin friction was 70% higher within the turbulent zone compared to the nonturbulent zone.
However, no data on the flow structures in the turbulent and nonturbulent zones were reported.
Hutchins et al. [65] identified conditional structures during low- or high-skin-friction events in a
turbulent boundary layer flow. They defined a low-skin-friction event as an event during which the
instantaneous skin-friction fluctuation is negative, and vice versa, and found that the mean velocity
profile during low-skin-friction events lie well above the velocity profiles during high-skin-friction
events, which is same as the findings of Volino et al. [64]. In addition, the conditional flow fields
reveal the presence of an elongated low-speed structure aligned in the flow direction flanked on
either side by a pair of counter-rotating vortices [66,67].

A conceptually simple technique of conditionally partitioning data sets such as flow fields into
distinct groups or clusters such that properties in the same cluster are more similar to each other
than those in other clusters is k-means clustering. Kaiser et al. [68] used this method to partition
snapshots from a mixing layer flow into k distinct clusters. The mean or centroid of each cluster is
determined iteratively by minimizing the sum of squares of distances between individual snapshots
of a cluster and the centroid of that cluster. This results in the formation of k different clusters
such that properties are similar within a cluster but vary from one cluster to the other. Another
approach to partitioning large data sets is thresholding. Nolan and Zaki [54] performed numerical
studies for boundary layer flows and developed a thresholding technique to discriminate laminar
spots from turbulent spots. An input signal, which is a time series of flow properties, e.g., velocity
fluctuations, is carefully thresholded using Otsu’s method [69]—an image-processing technique
used to automatically perform image segmentation by determining threshold(s) between distinct
regions such that each region shares certain characteristics. Otsu’s method picks out the optimum
threshold(s) by minimizing the intraclass variance, or maximizing the interclass variance. It can also
be used for multilevel thresholding; in general, the number of classes is one more than the number
of thresholds. Although the k-means and Otsu algorithms are different, it can be shown that they
both extremize the same objective function [70]. Nolan and Zaki identified laminar and turbulent
regions in boundary layer flows and computed conditional averages for those distinct regions. They
observed that the laminar-conditioned velocity profiles have a characteristic laminar shape whereas
the turbulent-conditioned profiles follow the law of the wall. We use Otsu’s method below.

Many other methods for discriminating turbulent areas from nonturbulent regions in a flow field
have been employed where thresholds are set for various flow properties. For example, instantaneous
wall-normal and spanwise velocities, instantaneous turbulent dissipation and vortex identification
(λ2 and Q criteria) are thresholded by Rehill et al. [71] in a boundary layer flow over a flat plate. They
found that the Q criterion and the dissipation methods show the least sensitivity to changes in the
threshold level and hence are the best input signals that can be used for identifying turbulent spots.
Baltzer et al. [72] examined and characterized the spatial arrangements of very large-scale motions
in a pipe flow at high Reynolds number. Regions at a distance of y/R = 0.15 from the pipe wall
where the streamwise velocity fluctuations were stronger than the threshold value u′

thr of −0.10Ubulk

were extracted—these are the low-speed regions in the flow field. A conditional average of many
such low-speed events reveals the presence of an elongated low-speed streak with counter-rotating
vortices on either side of it. Similar thresholding techniques to extract features from turbulent flow
fields in pipe, channel, or boundary layer flows, although for large-scale motions, have been adopted
by Dennis and Nickels [73] and Lee and coworkers [74–76].
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FIG. 2. Flow structures of a typical snapshot from channel flow DNS (Reτ = 85, L+
x ≈ 3000, L+

z ≈ 800).
Flow is in the x direction. Only the lower half of the channel is shown. The green sheet is the isosurface of
streamwise velocity U = 0.35; cross planes [(a) view from an angle] at x+ = 500 and 1950 show contours
of streamwise velocity; tubular structures are isosurfaces of Q2D = 0.05 [38] color-coded by the streamwise
vorticity at the same location: Red represents positive vorticity and white represents negative vorticity. Sample
regions showing weak and strong fluctuations are shown enclosed by blue and black boundaries, respectively
[(b) view from top].

For the most part, the work just described does not address the question introduced above
regarding the relationship between temporal intermittency in minimal domains and spatiotemporal
intermittency in extended ones. Indeed very little study has been made of the dynamics of the laminar
intervals in laminar-turbulent transition, although the dynamics in these regions can be nontrivial
and according to Avila et al. [77] persist into the fully turbulent regime. Evidence for the existence of
a spatiotemporal relationship between minimal channels and full turbulent flows has been presented
by Jiménez and coworkers [78–80]. They have shown that the variability in temporal statistics during
bursting events in minimal boxes agrees well with the variability in spatial statistics in sub-boxes
of similar sizes in large domains, suggesting that the flow dynamics in minimal channels are also
part of full-size turbulent flows. Figure 2 shows a snapshot from a channel flow DNS in which
we have arbitrarily circled regions of intense or weak turbulence activity (regions of active and
hibernating turbulence in the nomenclature introduced in Ref. [39]). The aim of the present work
is to systematically characterize the dynamics and structure in these regions and examine their
relationship to minimal channel and ECS results.

The paper is organized as follows. A brief discussion on formulation of the system and simulation
parameters are presented in Sec. II. Sampling methodology of intermittent low- and high-drag
events based on pointwise sampling of wall shear stress and conditional averaging of these events
are discussed in Sec. III A 1. In Sec. III A 2 we quantify this temporal intermittency. The mean
velocity profiles of low- and high-drag intervals are presented in Sec. III A 3 and the underlying
flow structures during these events have been illustrated in Sec. III A 4. Section III B 1 presents
a discussion on the identification of spatial intermittency and a comparison of temporal statistics
in a large domain with the spatial statistics, and finally in Sec. III B 2 we compare DNS results
with nonlinear traveling-wave solutions and find connections between the two. A summary of main
results and conclusions is presented in Sec. IV.

II. FORMULATION

We consider pressure driven flow of an incompressible Newtonian fluid in a rectangular, wall-
bounded domain (channel) maintained at constant mass flux, a schematic of which is shown in
Fig. 3. The x, y, and z axes correspond to the streamwise, wall-normal, and spanwise directions,
respectively. No-slip boundary conditions are applied at the top and bottom walls and periodic
boundary conditions are adopted in the streamwise and spanwise directions. The periods are Lx and
Lz in these directions, respectively. The half-channel height l = Ly/2 is chosen as the characteristic
length scale for nondimensionalization of all the lengths in the geometry. Velocities are scaled with
the laminar centreline velocity Uc for the given mass flux. Time t is scaled with l/Uc and pressure
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FIG. 3. Schematic of the plane Poiseuille flow geometry: The actual simulation box is highlighted with
dark-colored walls in the center, surrounded by its periodic images. The white dot on the bottom wall represents
a sampling point xs where we measure the instantaneous wall shear stress in Sec. III A.

p with ρU 2
c , where ρ is the fluid density. The nondimensionalized Navier-Stokes equations are then

given as

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u, (1)

∇ · u = 0. (2)

The Reynolds number is given as Re ≡ lUc/ν, where ν is the kinematic viscosity of the fluid. The
friction Reynolds number is defined as Reτ ≡ luτ /ν, where uτ ≡ √

τw/ρ is the friction velocity; τw

is the time- and area-averaged (mean) wall shear stress.
This study focusses on results for three Reynolds numbers, Re = 1490, 1820, and 2200

(corresponding to friction Reynolds numbers, Reτ = 70, 85, and 100, respectively). The streamwise
and spanwise periods in outer units are 42.86l × 11.43l at Reτ = 70, 35.36l × 9.43l at Reτ = 85, and
30.00l × 8.00l at Reτ = 100. These dimensions correspond to a domain size of L+

x ≈ 3000, L+
z ≈

800 in wall units at all values of Reτ : 70, 85, and 100. Here, the superscript + indicates normalization
with the viscous length scale, δν = ν/uτ .

Simulations are performed using ChannelFlow, a direct numerical simulator for incompressible
Newtonian fluid flow in a periodic, rectangular, wall-bounded domain, developed and maintained by
Gibson [81]. The system of coupled equations (1) and (2) is integrated in time with a third-order semi-
implicit scheme: A third-order implicit backward differentiation method is used to update the linear
terms while the nonlinear terms are integrated with an explicit third-order Adams-Bashforth method
[82]. Fourier-Chebyshev-Fourier spatial discretization is applied in all variables and nonlinear terms
are calculated with the collocation method. We use (Nx,Ny,Nz) = (196,73,164) grid points for
Reτ = 70, (160,73,120) grid points for Reτ = 85 and (160,85,120) grid points for Reτ = 100 in
the streamwise, wall-normal, and spanwise directions, respectively. The numerical grid spacings
in streamwise and spanwise directions are δ+

x ≈ 15 and δ+
z ≈ 5, respectively, for all the cases.

Nonuniform Chebyshev spacing in the wall-normal direction gives δ+
y,min ≈ 0.07 at the wall and

δ+
y,max ≈ 3 at the center of the channel. A constant time step, δt = 0.02, which satisfies the CFL

stability condition, is used in all simulations. The spatial and temporal resolutions are at the same
level as those reported in previous studies [83]. A convergence check was also done—spatial
resolution was increased and all the quantities reported in the paper were recalculated, yielding
negligible changes from the results reported here. Each simulation run is sufficiently long (more
than 25Re ≈ 6 × 104l/Uc time units) to ensure meaningful statistical averages.
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III. RESULTS AND DISCUSSION

The results are organized as follows. In Sec. III A we characterize events based on temporal
behavior—the fundamental measurement we consider here is the time series of shear stress at a
point on the wall. Based on behavior, specifically low- and high-drag events at that point, we focus
on the time series of flow properties at a point on a wall and at various discrete distances above
the wall, flow properties are sampled conditionally based on when an event happens in time, and
conditional averages are presented. In Sec. III B we characterize events based on space. Instead of
focusing just at a point, we examine the entire domain at the same time. Spatial regions or patches
showing similar characteristics are identified and put together in order to get spatially conditional
averages. Finally, we compare temporal and spatial dynamics of large-domain DNS with minimal
channel ECS.

A. Temporal intermittency

1. Time series of wall shear stress—unconditional and conditional

We first describe our method of characterization of events with varying amounts of drag relative
to the mean. To detect and sample such events happening locally with time, we measure the
instantaneous wall shear stress at a sampling point xs on a wall. A point xs is shown as a white dot
on the bottom wall in Fig. 3. In fact, to get better statistics we choose nine measurement locations
on the wall of the large domain in a way that the shear stress at each location is not correlated with
the other locations: Any two adjacent points are 1.67 × 2.67 correlation lengths apart. Our criteria
for an event is that the wall shear stress (τw) at xs must pass through a threshold value and stay on
the same side of the threshold for a specified minimum time duration. Specifically, for a hibernation
event, characterized by low drag, the wall shear stress must fall below the specified threshold and
remain below it for a specified time duration, and likewise for a high-drag hyperactive event where
τw must exceed a threshold value for a specified duration. We measure this time duration in units
of t∗ = tuτ / l, i.e., eddy turnover times, and our base case is to set this duration to t∗ = 3—we
address below the issue of sensitivity to the chosen value while for the moment we note that this
value was chosen based on observations from prior work. Jiménez and Moin [43] have observed that
the peak-to-peak distance in the time series of wall-shear deviations from the mean in turbulence
in a minimal channel is about t∗ ≈ 4. Similar observations were made in MFUs by Webber et al.
[84]. Xi and Graham [39] defined hibernation in minimal channels as events when the area-averaged
wall shear stress is below 90% of its mean value for more than 1.18t∗. In a later study [42] in
which hibernation was defined differently, they showed that the average duration of hibernation
events was t∗ ≈ 4.5. The default threshold values chosen for the current study are 90% of the
mean wall shear stress (τw) for a hibernation event and 110% of τw for a hyperactive event. For
Reτ = 70, 85, 100, t∗ > 3 corresponds to tUc/ l > 63.5, 64.5, 65.3, respectively, in outer units and
tu2

τ /ν > 211.1, 254.1, 303.1, respectively, in inner units. Again, sensitivity to the threshold value
is addressed with the presentation of the results.

Figure 4 shows time series of shear stress measured at a point xs at Reτ = 70, 85, and 100. By the
criteria above, the flow is in hibernation during the intervals bounded by the vertical orange lines:
The instantaneous wall shear stress (gray line) is significantly lower than the time averaged value
(τw) shown as a dashed line for 3 or more l/uτ . These are examples of low-drag events in turbulence
and this intermittent behavior is observed at all the Reynolds numbers considered. Figure 5 shows
some instantaneous snapshots of wall shear stress fluctuations before and during hibernation events
at friction Reynolds numbers 70, 85, and 100. The white dot in the center of the domain represents the
location where the wall shear stress shown in Fig. 4 is measured. The flow structures are significantly
three-dimensional at all the Reynolds numbers considered and fluctuations can be seen throughout
the domain: The intermittency observed is purely within turbulence. It is interesting to note that at
Reτ = 70, which is the lowest Reτ we consider, a large-scale structure of weak and strong turbulent
fluctuations appears in the form of stripes that are oriented obliquely relative to the mean flow. Similar
stripy patterns have also been observed experimentally in channel flow by Hashimoto et al. [60]
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FIG. 4. Time series of the wall shear stress at different friction Reynolds numbers. Gray, instantaneous;
black dashed, laminar; color dashed, time averaged; color dashed-dotted, threshold. (a) Reτ = 70, (b) Reτ = 85,
and (c) Reτ = 100.

as well as in Couette flow computations (e.g., Ref. [63]). The stripes we see here are oriented
at 20–30◦ relative to the mean flow, which is in excellent agreement with the orientation angle
reported in experiments [60]. As the Reynolds number increases, the stripiness start to disappear
[see Figs. 5(c)–5(f)] and eventually the turbulence becomes uniform. Further, it can be observed that
in the before hibernation figures (left column), the wall shear stress at and near the measurement
point is high (red), whereas it is low (blue) in the after hibernation figures (right column).

In Fig. 6(a), we show time series of 639 temporal hibernation events measured at Reτ = 85. The
beginning of each event is shifted to t∗ = 0. The ensemble average of all the instantaneous hibernation

FIG. 5. Spatial patterns of instantaneous wall shear stress fluctuations in the x-z plane of a turbulent channel
flow at [(a), (b)] Reτ = 70, [(c), (d)] 85, and [(e), (f)] 100. Figures in the left column show patterns before
hibernation, and figures in the right column depict patterns during hibernation.

024603-8



TEMPORAL AND SPATIAL INTERMITTENCIES WITHIN . . .

t*

w
/

w

0 5 10 15
0

0.5

1

1.5

2

2.5

3

t*

w
/

w

0 5 10 15
0

0.5

1

1.5

2

2.5

3

(a) (b)

FIG. 6. Instantaneous (thin gray lines) and ensemble-averaged (thick green solid line) wall shear stress
before, during, and after the intervals of (a) hibernation and (b) hyperactivity at Reτ = 85. The thick blue and
red lines highlight specific individual instantaneous events with a duration of 4 and 6 eddy turnover times,
respectively. The mean wall shear stress is represented by the green dashed line and the threshold by the green
dashed-dotted line. All the events are shifted along the time axis such that t∗ = 0 represents their beginning.

events is shown as a thick green line. On average, the wall shear stress during hibernation falls to
a plateau in the time interval 0.7 � t∗ � 3.0 and is preceded by a sharp peak in the wall shear
stress (higher than the mean) during −0.8 � t∗ � 0. Figure 6(b) shows instances that satisfy the
hyperactivity criterion. Before hyperactivity begins, a brief drop in the wall shear stress is observed
and it becomes higher than the mean for t∗ ≈ 0.7–3.0.The frequency of occurrence of hibernation
and hyperactive events has been quantified and the results are presented in Sec. III A 2. We do not
yet have a physical explanation as to why there is a spike in wall shear stress before hibernation or
a dip before hyperactivity.

The above-mentioned characteristics of hibernation and hyperactivity are observed for a range
of Reynolds numbers studied (Reτ = 70, 85, 100). Figure 7(a) shows ensemble-averaged wall
shear stress before, during, and after hibernation for three different Reynolds numbers. Error bars
representing standard error of the data at their respective Reynolds number are also shown. The error
bars are small, especially within the low-drag events.

As the Reynolds number is increased, keeping the threshold the same, the decrease in wall shear
stress during hibernation events becomes larger. This claim is supported by the observation that
the standard error during hibernation events is smaller than the variation in the wall shear stress
observed with increasing Reτ . On the other hand, the effect of Reynolds number on the strength of
hyperactive turbulence is not very clear, as shown in Fig. 7(b), although a drop in wall shear stress
before the start of hyperactivity is still observed for all the cases.

Figure 8 illustrates what happens to the wall shear stress as flow leaves hibernation. Here, data
from Figs. 6(a) and 7(a) are replotted with the time axis shifted such that t∗ = 0 represents the end
of a hibernation event. We observe that on average, as the flow leaves hibernation, there is a brief
spike in the wall shear stress. This effect is observed at all Reynolds numbers considered. As seen
earlier in Fig. 7(a), the strength of hibernation increases with Reynolds number.

A detailed sensitivity analysis at Reτ = 100, showing the effect of both threshold and time
duration criteria on the stress plateau just after the beginning of hibernation, is presented in Fig. 9.
It is observed in Fig. 9 that as the threshold criterion for hibernation is made more stringent, i.e.,
going from 95% to 75% of the mean stress, the stress during hibernation becomes smaller, but for
a constant threshold, the stress plateau remains the same for both the durations, indicating that the
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FIG. 7. Ensemble-averaged wall shear stress before, during, and after hibernation and hyperactivity at
different Reynolds numbers along with the mean and sampling threshold values. Error bars indicate standard
error. Here t∗ = 0 corresponds to the beginning of an event. (a) Hibernation: threshold τw/τw � 90% and (b)
hyperactivity: threshold τw/τw � 110%.

cutoff duration has no effect on the strength of hibernation. Results for the exit from hibernation as
well as for hyperactivity are analogous, as are those at Reτ = 70 and 85. Thus, for brevity, they are
omitted.

2. Statistics of temporal events

In this section we quantify the duration and frequency of occurrence of hibernating and hyperactive
turbulence and their dependence on Reynolds number. The statistics reported in this section are
obtained from simulation runs over a duration of 60000 l/Uc (more than 25Re) for all the cases.
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FIG. 8. (a) Instantaneous and ensemble-averaged wall shear stress at Reτ = 85 and (b) ensemble-averaged
wall shear stress at different Reynolds numbers as the flow leaves hibernation. Error bars indicate standard
error. Here t∗ = 0 corresponds to the end of an event.
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FIG. 9. Conditional wall shear stress for start of hibernation at Reτ = 100. Results are presented for
various threshold criteria (95%, 90%, 85%, 80%, 75%—increasing hibernation strictness in that order) and
time durations (t∗ > 3 and t∗ > 2). Error bars are not shown to avoid overcrowding. Here t∗ = 0 corresponds
to the beginning of a hibernation event.

The average duration of hibernating events is calculated as

tH =
∑NH

n=1 tH,n

NH

, (3)

where tH,n is the duration of the nth hibernating interval and NH is the total number of hibernating
intervals identified in the data set. On similar lines, we can define temporal intermittency factors
for hibernation and hyperactivity, specifically, the fraction of time flow spends in hibernation and
hyperactivity, respectively. These intermittency factors are calculated as

FH =
∑NH

n=1 tH,n

T
, (4)

FHA =
∑NHA

n=1 tHA,n

T
. (5)

Here, FH and FHA are temporal intermittency factors for hibernation and hyperactivity, respectively,
tHA,n is the duration of the nth hyperactive interval, and T is the total duration of the simulation. Note
that FH + FHA < 1 because for the major part of the total time the flow is neither in hibernation nor
in hyperactivity. The quantities calculated from above equations are plotted in Fig. 10, illustrating
their dependence on Reynolds number.

We observe that the fraction of time spent in hibernation, FH , decreases with increase in Reynolds
number. In contrast, the average duration of hibernating intervals remains almost invariant with the
change in Reτ : It is a bit higher than the cutoff duration chosen for the identification of hibernating or
hyperactive events, i.e., t∗ = 3. The average duration of hyperactive events, tHA, was also calculated
using an expression analogous to Eq. (3) and it was found to be very similar to tH (hence not plotted
to avoid overcrowding). Since 3 is the minimum duration for hibernation and hyperactivity, their
average duration must be larger than 3. The fraction of time spent in hyperactivity, FHA, increases
with increasing Reτ . With the average duration of hibernation and hyperactivity remaining almost
invariant with Reynolds number, and the corresponding time fraction decreasing and increasing,
respectively, the following inferences can be drawn for hibernating and hyperactive turbulence.
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FIG. 10. Average duration of hibernating turbulence (left ordinate) and the fraction of time spent in
hibernation and hyperactivity, FH and FHA, respectively, (right ordinate) as functions of friction Reynolds
number.

Increasing the Reynolds number and/or the strictness of the threshold criterion makes hibernation
happen less frequently. Second, the frequency of occurrence of hyperactive turbulence decreases
with the threshold, whereas it increases with the Reynolds number.

It is important to note that the above-mentioned quantities, tH , FH , tHA, and FHA, should be
interpreted in terms of their behavior and trend with respect to Reτ and the threshold; their specific
values will definitely depend on the choice of the cutoff duration for a hibernating/hyperactive event.
For example, if we choose t∗ = 2.5 as the criterion for a hibernating/hyperactive event, tH and tHA

decrease and FH and FHA increase. Nevertheless, the overall trends remain similar to the t∗ = 3 case.
It is also worth noting that the occurrence of hyperactive events is in general very infrequent—all the
cases reported are less than 5%, and they become extremely rare at low Reynolds numbers (<1%).

It is worth mentioning that the finite box size does seem to have some effect on intermittency
factors: We calculated the same quantities for a box 1.7 times bigger in both streamwise and spanwise
directions and found that both FH and FHA have reduced. Their trend as a function of Reτ remains
the same, however. On the other hand, it should also be noted that the conditional quantities including
wall shear stress (including the precursor peak and plateau), mean velocity, and flow structures, are
insensitive to a further increase in box size.

3. Conditional mean velocity profiles

Figure 11 shows the streamwise unconditional time-averaged velocity profiles at different
Reynolds numbers with solid lines. These all lie slightly above the Prandtl–von Kármán log-law
and are in good agreement with experimental and other numerical values reported in the literature
at similar Reynolds numbers [85–87]. In Fig. 11(a) we also present in solid circles the conditional
mean velocity profiles during hibernation events at the same Reynolds numbers, evaluated on a line
extending from the measurement point xs vertically into the fluid. These profiles are calculated by first
determining the ensemble-averaged streamwise velocity for several hibernation events, averaging
it over the plateau region t∗ = 0.7–3.0, and finally scaling it with the hibernating wall shear stress
determined during the same time interval. For reference, also shown on the same plot is the 95%
confidence interval to the MDR asymptote within which velocity profiles in the MDR regime from a
number of representative computational and experimental studies lie [89] – close to the wall, data for
polymer solutions lie close to the lower end of the interval, while farther from the wall it approaches
the upper end. The hibernating profiles lie well above the Prandtl–von Kármán log-law, and in fact
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FIG. 11. Unconditional (solid lines) and conditional (filled circles) ensemble-averaged streamwise mean-
velocity profiles at different Reynolds numbers. The black dotted line is the viscous sublayer, U+ = y+;
black dashed-dotted line is the Prandtl–von Kármán log-law, U+ = 2.5 ln y+ + 5.5; and the black dashed
line is the Virk MDR log-law, U+ = 11.7 ln y+ − 17.0. The orange dashed lines show the lower and upper
95% confidence intervals to the MDR asymptote [88,89]. (a) Hibernation: threshold τw/τw � 90% and (b)
hyperactivity: threshold τw/τw � 110%.

brush against the lower end of the MDR confidence interval. Figure 11(a) also shows mean velocity
profiles of lower branch ECS. It is observed that in the region y+ � 30 the conditional and ECS
velocity profiles are very similar while close to the centreline the conditional turbulent mean deviates
downward from the ECS profile. Even in the low-drag intervals the turbulence has fluctuations in
the core of the flow that are absent from the P4 lower branch solutions. Only a weak dependence of
conditional profiles on Reτ is observed.

Mean velocity profiles during hyperactive turbulence are illustrated in Fig. 11(b), alongside the
unconditional profiles at the same Reynolds numbers. It is observed that as the Reynolds number is
increased keeping the threshold criterion fixed, the mean velocity profile of the hyperactive event
moves down, away from the Prandtl–von Kármán log-law.

A detailed sensitivity analysis at Reτ = 100, showing the effect of both threshold and time
duration criteria on the velocity profiles, is presented in Fig. 12. Increasing the strictness of the stress
threshold (different colored curves) results in the lowering of the plateau stress during hibernation
(Fig. 9), which then results in the elevation of velocity profile in the region y+ � 20 as shown in
Fig. 12. Note that here also, and in all the future sections, each velocity profile is scaled with the
corresponding mean wall shear stress, unconditional or conditional as the case may be. On the other
hand, the velocity profiles are insensitive to the time duration (circles and triangles)—this result is
consistent with with insensitivity of the stress plateau during hibernation on the duration threshold.
The same trends are obtained for Reτ = 70 and 85.

4. Spatial variation of wall shear stress and flow structures during temporal hibernation events

In this section we look at the spatial patterns of wall shear stress and velocities observed before
and during hibernation intervals. In particular, flow behavior at and away from the measurement
location and its relation to hibernation and hyperactivity are discussed. Figures 13(a) and 13(b)
show the spatial structure of ensemble-averaged wall shear stress fluctuations at Reτ = 85 before
(t∗ = −0.52) and during (t∗ = 0.41) the hibernation event as observed at the white dot at the wall at
(x+,z+) = (1500,400). They are generated by identifying several instantaneous hibernation events
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FIG. 12. Unconditional (line) and conditional (symbols) mean velocities for hibernation at Reτ = 100.
Results are presented for various threshold criteria (95%, 90%, 85%, 80%, 75%—increasing hibernation
strictness in that order) and time durations (t∗ > 3 and t∗ > 2).

at the center of the domain (white dot) based on the set criteria, τw/τw � 90% for a duration of t∗ > 3
for this case, shifting the time axis so that t∗ = 0 corresponds to the time of the onset of hibernation,
i.e., when the wall shear stress starts to fall below the threshold, and finally ensemble-averaging all
the conditionally sampled instantaneous wall shear stress-fluctuation fields, τ ′

w(x,z,t), corresponding
to the given time. Here, the fluctuating field is given as τ ′

w = τw − τw. Ensemble-averaged results
at Reτ = 70 and 100 are qualitatively similar and hence not shown. The before picture [Fig. 13(a)]
shows a region of higher-than-mean wall shear stress (red color) that corresponds to the precursor
peak in the local wall shear stress as observed in Fig. 6(a). It also shows a region of lower-than-mean
wall shear stress (blue color) trailing behind the red region. This blue region has fully developed
in the after picture [Fig. 13(b)] and it corresponds to the plateau in the local wall shear stress
in Fig. 6(a), depicting the low-wall shear stress nature of hibernating turbulence, for example, an
elongated low-speed streak spanning a length of approximately 1500 and 50 viscous wall units in
the streamwise and spanwise directions, respectively. This low-speed streak is a result of a low wall
shear stress region and corresponds to a localized pair of counter-rotating vortices. The structures
of these vortex pairs is discussed below. Sample instantaneous wall shear stress fluctuation fields
before and during hibernation are shown in Fig. 5. In all the before pictures (left column) we can

FIG. 13. Spatial patterns of ensemble-averaged conditionally sampled (τw/τw � 90%) wall shear stress
fluctuations at Reτ = 85 (a) before (t∗ = −0.52) and (b) during (t∗ = 0.41) hibernation.
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FIG. 14. Spatial patterns of ensemble-averaged conditionally sampled (τw/τw � 110%) wall shear stress
fluctuations at Reτ = 85 (a) before (t∗ = −0.48) and (b) during (t∗ = 0.45) hyperactivity.

see high wall shear stress at the measurement location while in the after pictures (right column), a
low wall shear stress is seen at the same location.

We use the method described above to generate the ensemble-averaged spatial patterns of the
wall shear stress before and during hyperactivity. The light blue color in the center of Fig. 14(a)
corresponds to the very brief drop in the wall shear stress before the start of hyperactivity; for
example, see Fig. 6(b). The red region trailing behind it which is fully developed in the channel
center [Fig. 14(b)] corresponds to the higher-than-mean wall shear stress during hyperactivity. As
discussed in Sec. III A 2, the frequency of occurrence of hyperactive events is very low—only about
2% of the total time is spent in hyperactivity for the case plotted. Thus, averaging in even very long
trajectories does not give good statistics. This effect can in fact be observed at points far from the
measurement location in Fig. 14 where the wall shear stress does not revert as smoothly as in the
case of low-drag events back to the overall mean value.

We now look at the spatial patterns at Reτ = 85 as the flow leaves hibernation. In Fig. 8(a) we
observed a brief spike in the wall shear stress just after the hibernation period. The plateau of low wall
shear stress is illustrated by an elongated low-speed streak in Fig. 15(a) and the spike that follows
by a region of elevated wall shear stress at the measurement location in the center in Fig. 15(b).

We now look at the flow structures in the cross-flow plane as observed before and during
hibernating intervals. In Fig. 16 we show the ensemble-averaged y-z planes of the channel at
Reτ = 85 before (t∗ = −0.52) the hibernation event. Figure 16(b) corresponds to the location
where measurements are taken, at x+ = 1500, while Fig. 16(a) corresponds to x+ = 500, a region
developing behind the measurement location. Flow is out of the plane. Contours represent the
streamwise velocity whereas arrows represent the wall-normal and spanwise velocities.

At the measurement location we observe a downward motion of fluid (indicated by downward-
pointing arrows) and this momentum transfer toward the wall results in a region of high wall shear
stress corresponding to the precursor peak in Figs. 6(a) and 13(a). The low wall shear stress region
that trails behind the high wall shear stress is formed due to the motion of fluid away from the wall.

FIG. 15. Spatial patterns of ensemble-averaged conditionally sampled (τw/τw � 90%) wall shear stress
fluctuations at Reτ = 85 (a) during (t∗ = −0.41) and (b) after (t∗ = 0.52) hibernation.
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FIG. 16. Flow patterns of ensemble-averaged conditionally sampled (τw/τw � 90%) velocities in the y-z
plane of a turbulent channel flow at Reτ = 85 before the hibernation event. (a) x+ = 500 and (b) x+ = 1500.

This region develops into a long low-speed streak as the flow enters hibernation. This is illustrated
in Fig. 17 for Reτ = 85 at t∗ = 0.41. At both the locations, i.e., measurement location at x+ = 1500
and trailing location at x+ = 500, we observe transfer of momentum away from the wall which
corresponds to counter-rotating streamwise vortex pairs that result in a long streamwise streak as
observed earlier in Fig. 13(b).

B. Spatial intermittency and connections with nonlinear traveling waves

1. Spatial distribution of hibernation and quantification of spatial intermittency

We now turn from temporal sampling to spatial sampling of the channel flow dynamics. To
discriminate between spatially occurring high-, intermediate-, and low-drag regions and quantify the
intermittency, we use a technique similar to what Nolan and Zaki [54] used to discriminate laminar
spots from turbulent spots. Specifically, we introduce a detector function that uses information from
longitudinal and lateral variations of velocity, and compute this for each snapshot obtained from
DNS. Simply using the wall shear stress as the detector function is not desirable because even in
a region of high turbulence activity there will be low-stress regions corresponding to low-speed
streaks. We found that a better detector function combines the wall shear stress with the spanwise
derivative of the streamwise velocity above the wall in the buffer layer:

D(x,z) ≡
∣∣∣∣∂U

∂y

∣∣∣∣
w

+
∣∣∣∣∂U

∂z

∣∣∣∣
y+=15

. (6)

FIG. 17. Flow patterns of ensemble-averaged conditionally sampled (τw/τw � 90%) velocities in the y-z
plane of a turbulent channel flow at Reτ = 85 during the hibernation event. (a) x+ = 500 and (b) x+ = 1500.
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FIG. 18. Contours of (a) detector function after filtering and (b) spatial patterns of wall shear stress
fluctuations from a single snapshot of DNS at Reτ = 85, along with the thresholds (solid and dashed curves)
obtained from application of Otsu’s method to the field shown in (a).

The first term on the right-hand side is simply the drag; the reasoning for choosing the second term is
as follows. It is known that the streaks do not always flow straight in the streamwise direction—they
meander in the spanwise direction as well. Johansson et al. [90] showed that streaky structures
asymmetric in the spanwise direction result in large turbulence production. To take this into account,
we include the streamwise velocity gradient in the spanwise direction, ∂U/∂z, in the buffer layer at
the point of maximum variance, y+ = 15, in our detector function. We did consider other detector
functions, for example, D = |∂U/∂y|w + |∂W/∂y|w, where W is the spanwise velocity—both gave
very similar results. This function is lowpass filtered by a Gaussian filter, the size of which is set
according to correlation lengths: the characteristic streamwise length of the streak (600 wall units)
and the characteristic stream spacing (100 wall units). We then apply Otsu’s method independently
to the D field for each snapshot [69], which results in a demarcation between regions of varying
levels of turbulence. We emphasize that there are no explicit thresholds of either time or stress level
in Otsu’s method—all we specify is the number of classes we want the data at each time instant
to be classified into. Otsu’s method picks out the optimum threshold by minimizing the intraclass
variance, or in other words, maximizing the interclass variance. We specify that three classes be
sought (corresponding to low, intermediate, and high values of D). The boundaries (or edges)
between any two classes results in demarcation of weakly, intermediately and strongly fluctuating
regions (hibernating, active, and hyperactive).

An example of the result of the Otsu algorithm is shown in Fig. 18. The contours in Fig. 18(b)
represent the wall shear stress patterns from an instantaneous flow field at Reτ = 85. Black solid
and dashed lines correspond to the two thresholds obtained from the filtered detector function at
the same time instant, the contours of which are shown in Fig. 18(a). The solid line represents the
demarcation line between high-drag and intermediate-drag regions and the dashed line separates the
intermediate-drag areas from the low-drag areas. A distinct difference between the three regions is
observed—areas enclosed by solid lines show high wall shear stress and strong fluctuations whereas
the areas enclosed by dashed lines are smooth, local wall shear stress values are low, and the
variations are small. Regions between solid and dashed lines lie in the intermediate-drag regime.

Streamwise velocity profiles are sampled conditionally for the three intermittent spatial regimes—
low, intermediate, and high D—and averaged over those conditional areas for the entire time series.
Note that we are treating all the spatially occurring low-drag events equally—an event covering a large
area is given equal weight as two or more widely separated events covering the same area. The same
is applicable to intermediate- and high-drag events. In Figs. 19(a)–19(c) we compare conditionally
averaged mean velocity profiles from edge-detection scheme with the pointwise thresholding results
discussed earlier in Sec. III A 3. We see a clear dependence of mean flow statistics on the spatially
intermittent nature of near-wall turbulence—the conditional profiles in the low- and high-drag regions
lie, respectively, above and below the intermediate drag conditional profile, which lies almost over the
unconditional time-averaged velocity profile. This is observed at all the Reynolds numbers. We also
find a very good agreement of velocity profiles of hibernating, active, and hyperactive turbulence
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FIG. 19. A comparison between conditionally-averaged streamwise velocity profiles based on time and
space criteria at the corresponding Reynolds number. (a) Reτ = 70, (b) Reτ = 85, and (c) Reτ = 100.

that were based on temporal analysis with those from spatial analysis; i.e., conditional low- and
high-drag velocity profiles from temporal sampling show good correspondence with the conditional
low- and high-drag profiles, respectively, from spatial analysis. It is important to emphasize that the
temporal and spatial sampling techniques are completely different from one another (the temporal
analysis requires thresholds on wall shear stress and time duration to be specified explicitly while
there are no predetermined thresholds in the spatial analysis), so the quantitative similarity between
the results is a reflection of the robustness of the intermittency phenomenon in these flows. Here
also, the agreement between velocity profiles of lower branch ECS and low-drag regions is good in
the region y+ � 30, especially for Reτ = 70 and 85.

In the above results, we have illustrated the intermittent dynamics (both temporal and spatial) of
transitional channel flow turbulence in an extended domain. In minimal channels, the intermittency
is associated with the chaotic movement of turbulent trajectories between lower and upper branch
ECS. In Fig. 20, we compare conditional mean profiles from our analyses here to those in the minimal
channel. Velocity profiles of ECS are also included for comparison. The mean velocity profile of low
drag events in the minimal channel is determined using the log-law slope criterion developed by Xi
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FIG. 20. Comparison of low-drag velocity profiles in minimal channel occurring temporally (when A∗
20−30 >

7) with low-drag velocity profiles in an extended domain occurring both temporally (when τw/τw � 90% for
t∗ > 3) and spatially [regions of low values of D(x,z)]. Velocity profiles of lower branch ECS are also plotted
for comparison. (a) Reτ = 70, (b) Reτ = 85, and (c) Reτ = 100.

and Graham [42]: The instantaneous log-law slope of the velocity profile (A∗
20−30) is obtained in the

interval y∗ = 20–30, and if A∗
20−30 > 7, it is considered to be low drag (or hibernation). Here, the

superscript ∗ indicates normalization with the instantaneous viscous length scale. It is observed that
all the low-drag velocity profiles—both minimal and large domain—show very good agreement.
The agreement with lower branch ECS profile is also excellent in the region y+ � 30.

Finally, we quantify the spatially intermittent nature of hibernation. Figure 21 shows intermittency
factors for hibernation based on temporal and spatial sampling techniques: The red line from
temporal sampling as one shown in Fig. 10 and the green line is based on spatial sampling and is
calculated as

FH =
∑NH

n=1 AH,n

A
. (7)
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FIG. 21. Intermittency factors for hibernation, both temporal and spatial, as a function of friction Reynolds
number.

Here, AH,n is the area of the nth patch of the domain undergoing hibernation at any given time,
NH is the total number of patches in an instantaneous snapshot, and A is the total surface area
of the wall. It is observed that first both temporal and spatial intermittency factors are very close
to each other for all the Reynolds numbers, and second, as the Reynolds number is increased, the
occurrence of hibernation, both temporally and spatially, decreases. It is worth mentioning that,
by construction, the spatial separation of hibernation patches is larger than the correlation lengths
of the flow. The average separations between the centers of mass of hibernation patches in the
streamwise and spanwise directions, respectively, in wall units, are 1131.54 × 288.14 for Reτ = 70,
1108.87 × 282.32 for Reτ = 85, and 1113.66 × 282.19 for Reτ = 100. In other words, they are
higher than the correlation lengths in the streamwise and spanwise directions, respectively, by a
factor of 1.89 × 2.88 for Reτ = 70, 1.85 × 2.82 for Reτ = 85, and 1.86 × 2.82 for Reτ = 100.
There does not seem to be a clear dependence of the mean spatial separation between hibernation
patches on Reynolds number, but the area of the region undergoing hibernation does depend on
Reynolds number, as already shown in Fig. 21. It is noteworthy that we get nearly identical velocity
profiles and intermittency factors from two completely independent thresholding criteria, one based
on time and the other based on space.

2. Connections to nonlinear traveling waves

Figure 22 illustrates a bifurcation diagram of average velocity versus friction Reynolds number for
the P4 family of minimal domain traveling-wave (TW) solutions discussed in Sec. I. These solutions
have streamwise and spanwise periods of length π and π/2, respectively, in outer units. A solution
with higher friction Reynolds number (Reτ ) is an upper branch (UB) solution corresponding to high
drag, while that with lower Reτ is a lower branch (LB) solution. Curves for the Prandtl–von Kármán
and Virk MDR log-law profiles are also shown. In this representation, also known as the Prandtl–von
Kármán plot, the lower branch solutions lie above the upper branch solutions, because for the same
wall shear stress, a lower branch solution has higher bulk velocity than the upper branch solution. We
will make comparisons between extended-domain DNS results and minimal channel ECS at constant
mass flux (laminar centerline velocity Re). The DNS at Reτ = 70, 85, and 100 have Reynolds
numbers based on the laminar centerline velocity (Re) of 1490, 1820, and 2200, respectively. The
ECS used for comparison are represented on the plot as red, green, and blue triangles, respectively.
Triangles pointing upwards are upper branch solutions whereas triangles pointing downwards are
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FIG. 22. Prandtl–von Kármán plot of the bifurcation diagram for the P4 family of ECS [28]. The average
velocities as a function of friction Reynolds number are shown. Corresponding curves for Newtonian turbulence
and Virk MDR are also shown.

lower branch solutions. For the P4 family, there are two lower-branch-solution branches, denoted
as LB1 and LB2, and two upper-branch-solution branches, denoted as UB1 and UB2 [28]. Lower
branch solutions used for comparison with DNS that lie on the LB1 branch are represented as
hollow triangles while the ones that lie on the LB2 branch are represented as filled triangles. Only
the solutions that lie on the UB1 upper branch are used for comparison—the UB2 branch has not yet
been successfully resolved for higher Re. Mean velocity profiles of these traveling wave solutions
are illustrated in Fig. 1(b). A subharmonic branch (SB) arises above the turning point of the LB
solutions at Reτ = 88.7, giving rise to spatiotemporal period doubling—this branch has doubled
fundamental spatial periods in the streamwise and spanwise directions compared to the P4 solution
family.

It should be kept in mind that the ECS used for comparison here come from one particular
family (P4) at one particular domain size. An interesting feature of this family of solutions, as
already mentioned earlier, is that the turbulent dynamics in the minimal channel is organized around
these ECS. As illustrated in Fig. 1(a), Park and Graham [28] studied connections between traveling
wave solutions and turbulent trajectories in a minimal domain, observing that while the dynamical
trajectory spends most of the time in one core region of the state space, fluctuating about the upper
branch ECS UB1, it occasionally escapes the core region and passes through the vicinity of LB1
solutions, approaching LB2 very closely. In particular, LB2 is the closest approach of the trajectories
to the laminar state and seems to form a lower bound of the turbulent trajectory with regard to flow
properties like wall shear stress, energy dissipation rate, and turbulent kinetic energy—see Fig. 1(a).
This observation is further illustrated in Fig. 23 where we show time series of wall shear stress in
minimal channel turbulence at laminar centreline Reynolds numbers of 1490, 1820, and 2200.

To address the relationship between large-box DNS with upper and lower branch ECS, we begin
by comparing averages over patches the size of minimal channel ECS in the large domain with the
actual ECS. In Fig. 24 we show time series of wall shear stress measured over a patch the size of
a minimal channel, L+

x ≈ 360,L+
z ≈ 140, and compare it with the wall shear stress of the exact

coherent states at the same Re.
Due to the saddle-node bifurcation shown in Fig. 22, we observe that the wall shear stress of both

LB1 and LB2 decreases as the Reynolds number is increased. The gap between the lower branch
ECS and the DNS increases with increasing Reynolds number. The LB2 branch seems to form the
lower bound to the wall shear stress for the corresponding large-box DNS; this bound is fairly sharp
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FIG. 23. Time series of the wall shear stress measured in a minimal channel at different Reynolds numbers.
Time-averaged values and wall shear stress for upper and lower branch ECS are also shown for comparison.
(a) Re = 1490, (b) Re = 1820, and (c) Re = 2200.

at low Re but becomes less so as Re increases. This result is important because the same trend has
been observed in minimal channels. In fact, Fig. 24 (minimal patches in the large box) is virtually
indistinguishable from Fig. 23 (minimal box). This suggests that localized regions in a large box
approach the traveling wave solutions in a way similar to minimal channels.

To make a closer comparison of hibernating turbulence occurring spatially in a large domain with
a lower branch ECS, we consider the conditionally averaged velocity field around a point located in
the center of an instantaneous patch undergoing hibernation. For DNS at Re = 1820, a total number
of 26033 low-drag regions or patches are identified using the edge-detection scheme discussed in
Sec. III B 1. This amounts to an average of 9 events occurring per field. The conditionally averaged
flow field is determined by locating the centroids of all the low-drag patches, shifting the velocity
fields such that all centroids coincide, and then averaging them. Reflection symmetry is enforced in
the spanwise (neutral) direction. The spatial wall shear stress pattern of the resulting conditionally av-
eraged flow field is shown in Fig. 25. We observe a low-speed streak in the streamwise direction strad-
dled by streamwise vortices. Qualitatively, the picture looks similar to the conditionally averaged wall
shear stress patterns obtained by pointwise thresholding [see Fig. 13(b)] except for a couple of differ-
ences. First, the spatially sampled streak is not as elongated as the temporally sampled one. Second,
the spatially identified streak has a spanwise width a little bit higher than that from temporal sampling.

FIG. 24. Time series of the wall shear stress measured over a minimal patch in a large channel at different
Reynolds numbers. Time-averaged values and wall shear stress for upper and lower branch ECS are also shown
for comparison. (a) Re = 1490, (b) Re = 1820, and (c) Re = 2200.
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FIG. 25. Spatial patterns of ensemble-averaged wall shear stress fluctuations at Reτ = 85 (Re = 1820).
The white dot represents the location at which the centroids of individual low-drag patches were centered.
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FIG. 26. [(a)–(c)] Comparison of conditional mean velocity profiles at the centroid of hibernation patches
in a large box with lower branch ECS at the same Reynolds number. (d) All the conditionally averaged velocity
profiles at the centroids of hibernation patches at different Reynolds numbers. (a) Re = 1490, (b) Re = 1820,
(c) Re = 2200, and (d) all Re values.
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Illustrated in Fig. 26 are conditionally averaged mean velocity profiles at the centroid of
hibernation regions occurring spatially. For example, the hibernation profile in Fig. 26(b) corresponds
to the streamwise velocity profile observed at the white dot in Fig. 25. As we have done everywhere,
each velocity profile plotted in Fig. 26 is scaled with the corresponding mean wall shear stress,
unconditional or conditional as the case may be. This is why they all collapse in the near-wall
region. For all the three cases, we observe that the velocity profiles at the centroid of hibernation
patches are elevated: They lie well above the unconditional time averaged profiles from DNS and very
close to the lower branch ECS. In fact, in the region y+ � 30, both the conditional and ECS velocity
profiles are very similar, and become nearly indistinguishable as the Reynolds number is increased.
However, the behavior in the core (near the centreline) remains distinct. Similar observations were
made while comparing lower branch ECS profiles with conditionally averaged (low-drag) profiles
from temporal and spatial sampling techniques [Figs. 11(a) and 19]. This pattern is also observed by
other researchers when comparing ECS to minimal channel turbulence [28,91] and localized relative

FIG. 27. Spatial patterns of wall shear stress fluctuations of P4 lower and upper branch traveling wave
solutions. (a) Re = 1490, LB2, (b) Re = 1490, UB1, (c) Re = 1820, LB2, (d) Re = 1820, UB1, (e) Re = 2200,
LB2, and (f) Re = 2200, UB1.
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FIG. 28. [(a), (d), (g)] Spatial patterns of instantaneous wall shear stress fluctuations from DNS. [(b), (e),
(h)] Distance between DNS and lower branch ECS that lie on LB2. [(c), (f), (i)] Distance between DNS
and upper branch ECS that lie on UB1. (a) Re = 1490, DNS, (b) Re = 1490, dLB2, (c) Re = 1490, dUB1,
(d) Re = 1820, DNS, (e) Re = 1820, dLB2, (f) Re = 1820, dUB1, (g) Re = 2200, DNS, (h) Re = 2200, dLB2,
and (i) Re = 2200, dUB1.

periodic orbits (RPOs) / lower branch solution to turbulent puffs in pipe flows [32]—it seems that
a single ECS is not capable of capturing both near-wall and core dynamics. The close similarity for
y+ � 30 again suggests that a hibernation event in an extended domain is, at least with regard to mean
velocity, a spatially local approach toward a lower branch ECS. In Fig. 26(d), conditional streamwise
velocity profiles observed at the centroid of hibernation regions are presented as a function of
Reynolds number. There does not seem to exist an obvious dependence on Reynolds number.

We now propose a way of quantifying the local closeness of a DNS to lower and upper branch
exact coherent states. We consider instantaneous snapshots of spatial patterns of wall shear stress.
See Fig. 5 for some examples of snapshots at Reτ = 70, 85, and 100; here we will be using the
snapshots from the right column to make comparisons with the traveling wave solutions [plotted
again in Figs. 28(a), 28(d), and 28(g)]. We calculate how closely a localized coherent structure
from a DNS snapshot resembles the chosen ECS based on the wall shear stress measurements. In
particular, we calculate the following function:

d(x,z,t) = min
φ

⎛
⎜⎝ 1

L′
xL

′
z

√√√√∫ x+ L′
x

2

x− L′
x

2

∫ z+ L′
z

2

z− L′
z

2

{f (x ′,z′,t) − g(x ′,z′,t,φ)}2dx ′dz′

⎞
⎟⎠ (8)

Here, d is the “distance” between DNS and ECS, f is a flow property from the DNS and g is the
same flow property from the traveling wave or a reference template, x and z are the coordinates in
space, φ represents the spatial phases in x and z of g relative to f , and L′

x = π and L′
z = π/2 are

the streamwise and spanwise periods, respectively, of the ECS we are using for comparison. Since
we have chosen to quantify the closeness based on wall shear stresses, here f = τw,DNS(x,z,t) and
g = τw,TW(x,z). Shown in Fig. 27 are wall shear stress fluctuation patterns of the lower (LB2) and
upper (UB1) branch traveling wave solutions of the P4 family used as templates for comparison with
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DNS. Figures 28(b), 28(e), and 28(h) show instantaneous spatial variation of d when the reference
template is wall shear stress of a lower branch traveling wave. It can be observed that bluer regions
that have smaller values of d are the ones that are much closer to the lower branch traveling wave and
thus exhibit low drag. On the other hand, regions that are more red are characteristic of high drag. In
Figs. 28(c), 28(f), and 28(i), the distance of DNS from the upper branch traveling wave is shown. A
red region in this figure may not necessarily mean low drag, but could also mean a high-drag region
due to hyperactive or active (normal) turbulence that is just different from the upper branch traveling
wave used here for comparison. On the other hand, a blue region on this figure would mean that it
is close to the upper branch and will exhibit high drag.

To summarize, a number of separate results, from time series of wall shear stress to conditional
mean velocity profiles to a measure of local similarity between wall shear stress patterns suggest that
near-wall features of exact coherent states found in minimal channels appear in a spatiotemporally
local manner in extended domains. In summary, the results presented here suggest that spatiotemporal
intermittency in transitional channel flow turbulence is related to temporal intermittency, and by
extension to the state space structure, in the minimal channel.

IV. CONCLUSIONS

The present work has quantified, using temporal and spatial sampling and conditional averaging
techniques, the intermittent dynamics of transitional channel flow turbulence in an extended domain.
In minimal domains, turbulence in this Reynolds number range displays substantial intermittency
that is associated with chaotic movement of turbulent trajectories between lower and upper branch
invariant solutions known as exact coherent states (ECS). In the present work we address the
relationship between temporal dynamics in minimal channels and spatiotemporal dynamics in
extended domains. Both temporal and spatial analyses of the turbulent velocity fields are performed,
the latter using image analysis methods. These analyses partition the flow characteristics into three
classes depending on degree of turbulence activity; we present the differences between flows fields
in these classes in terms of simple quantities such as mean velocity, wall shear stress, and flow
structures. Notably, the temporal and spatial analysis methods, although completely independent of
one another, yield very similar results for both low- and high-drag regions. The conditional mean
velocity profiles during low-drag events in large domains, both temporal and spatial, closely resemble
those found in low-drag temporal intervals in the minimal channel. Finally, we present connections
between turbulence and exact coherent states by comparing wall shear stress in localized patches the
size of minimal channels in large domains with those in actual minimal channel. Conditional mean
velocity profiles during low-drag intervals occurring temporally and spatially in extended domains
were compared with the lower branch ECS profiles from the P4 family of solutions and an excellent
agreement was found in the region y+ � 30. This analysis shows that, at least with regard to the
quantities studied here, the near-wall flow structure in the low-drag patches of the large domain
resembles that of a lower branch ECS. A clear direction for future work is development of methods
to extend the comparison to incorporate more details of the velocity fields.

We believe that these results have the potential to shed light on the structure and dynamics of
laminar intervals in the laminar-turbulent transition regime, especially as Reynolds number increases
toward the uniformly turbulent regime. In particular, our work is consistent with that of Avila et al.
[77], who note that intermittent low-drag excursions persist into the fully turbulent regime. We find
that although low-drag hibernating events become increasingly rare as Re increases, their structure,
especially in terms of conditional mean velocity profile, is insensitive to Re. Finally, the results
presented here suggest that spatiotemporal intermittency in transitional channel flow turbulence
is related to temporal intermittency, and by extension to the state space structure, in the minimal
channel. The similarity in near wall structure, especially wall shear stress and conditional mean
velocity profile, suggests that ECS found in a minimal channel continue to play some role in
organizing the spatiotemporal dynamics in extended domains.
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flow, Phys. Fluids 9, 1054 (1997).
[85] V. C. Patel and M. R. Head, Some observations on skin friction and velocity profiles in fully developed

pipe and channel flows, J. Fluid Mech. 38, 181 (1969).
[86] N. Kasagi and N. Shikazono, Contribution of direct numerical simulation to understanding and modelling

turbulent transport, Proc. Math. Phys. Sci. 451, 257 (1995).
[87] T. Tsukahara, Y. Seki, H. Kawamura, and D. Tochio, DNS of turbulent channel flow at very low

Reynolds numbers, in Proceedings of the Fourth International Symposium on Turbulence and Shear
Flow Phenomena TSFP-4 - Williamsburg, VA (Begell House, 2005), p. 935.

[88] P. S. Virk, H. S. Mickley, and K. A. Smith, The ultimate asymptote and mean flow structure in Toms’
phenomenon, J. Appl. Mech. 37, 488 (1970).

[89] M. D. Graham, Drag reduction and the dynamics of turbulence in simple and complex fluids, Phys. Fluids
26, 101301 (2014).

[90] A. V. Johansson, P. H. Alfredsson, and J. Kim, Evolution and dynamics of shear-layer structures in
near-wall turbulence, J. Fluid Mech. 224, 579 (1991).

[91] Y. Hwang, A. P. Willis, and C. Cossu, Invariant solutions of minimal large-scale structures in turbulent
channel flow for Reτ up to 1000, J. Fluid Mech. 802, R1 (2016).

024603-30

https://doi.org/10.1063/1.1825451
https://doi.org/10.1063/1.1825451
https://doi.org/10.1063/1.1825451
https://doi.org/10.1063/1.1825451
https://doi.org/10.1063/1.3464157
https://doi.org/10.1063/1.3464157
https://doi.org/10.1063/1.3464157
https://doi.org/10.1063/1.3464157
https://doi.org/10.1063/1.4824988
https://doi.org/10.1063/1.4824988
https://doi.org/10.1063/1.4824988
https://doi.org/10.1063/1.4824988
https://doi.org/10.1115/1.4005282
https://doi.org/10.1115/1.4005282
https://doi.org/10.1115/1.4005282
https://doi.org/10.1115/1.4005282
https://doi.org/10.1063/1.869323
https://doi.org/10.1063/1.869323
https://doi.org/10.1063/1.869323
https://doi.org/10.1063/1.869323
https://doi.org/10.1017/S0022112069000115
https://doi.org/10.1017/S0022112069000115
https://doi.org/10.1017/S0022112069000115
https://doi.org/10.1017/S0022112069000115
https://doi.org/10.1098/rspa.1995.0125
https://doi.org/10.1098/rspa.1995.0125
https://doi.org/10.1098/rspa.1995.0125
https://doi.org/10.1098/rspa.1995.0125
https://doi.org/10.1115/1.3408532
https://doi.org/10.1115/1.3408532
https://doi.org/10.1115/1.3408532
https://doi.org/10.1115/1.3408532
https://doi.org/10.1063/1.4895780
https://doi.org/10.1063/1.4895780
https://doi.org/10.1063/1.4895780
https://doi.org/10.1063/1.4895780
https://doi.org/10.1017/S002211209100188X
https://doi.org/10.1017/S002211209100188X
https://doi.org/10.1017/S002211209100188X
https://doi.org/10.1017/S002211209100188X
https://doi.org/10.1017/jfm.2016.470
https://doi.org/10.1017/jfm.2016.470
https://doi.org/10.1017/jfm.2016.470
https://doi.org/10.1017/jfm.2016.470



