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Confined active nematics exhibit rich dynamical behavior, including spontaneous flows, periodic
defect dynamics, and chaotic ‘active turbulence’. Here, we study these phenomena using the frame-
work of Exact Coherent Structures, which has been successful in characterizing the routes to high
Reynolds number turbulence of passive fluids. Exact Coherent Structures are stationary, periodic,
quasiperiodic, or traveling wave solutions of the hydrodynamic equations that, together with their
invariant manifolds, serve as an organizing template of the dynamics. We compute the dominant
Exact Coherent Structures and connecting orbits in a pre-turbulent active nematic channel flow,
which enables a fully nonlinear but highly reduced order description in terms of a directed graph.
Using this reduced representation, we compute instantaneous perturbations that switch the system
between disparate spatiotemporal states occupying distant regions of the infinite dimensional phase
space. Our results lay the groundwork for a systematic means of understanding and controlling
active nematic flows in the moderate to high activity regime.

Active matter is a class of materials composed of in-
teracting and energy-consuming constituents. The past
two decades have seen active matter grow into a new
paradigm of nonequilibrium matter, with applications to
both synthetic and biological systems [1]. Under the in-
fluence of particle-level driving forces, the emergent spa-
tiotemporal structures of active matter are free to explore
a much larger state space than available to passive equi-
librium materials. Behaviors with no known equilibrium
analogue include flocking and swarming [2–8], athermal
clustering of spheres [9–13], spontaneous flows [14–22],
and low Reynolds number ‘active’ turbulence [23–27].

There is an extensive theoretical framework for under-
standing and manipulating emergent structures in mate-
rials at or near equilibrium. However, there is not yet
an equivalent framework for active matter. In this pa-
per, we make progress towards this goal in the context
of active nematics (AN), which are suspensions of ac-
tive, rod-like, and apolar components [25, 28]; examples
include bacterial films and cell colonies [29, 30]. Some
of the most distinct phenomenology of AN occurs under
confinement, in which case diverse spatiotemporal flow
patterns are observed, including states of active turbu-
lence [18, 25, 31–35]. There is much interest in learning
to navigate this large space of spatiotemporal structures,
for example steering a system toward a desired end state
or switching between states [36–38]. In addition, there
are fundamental unanswered questions related to active
turbulence: how active fluids become turbulent, how to
characterize them, and how to promote or inhibit transi-
tion to turbulence [27, 39].

Here we take a deterministic dynamical systems ap-
proach to these questions, beginning with the hydro-
dynamic equations governing AN. The dynamical sys-
tems approach has provided fresh insight into the long-
standing problem of transition to turbulence in passive,
high Reynolds number fluid flows [40]: the core premise,
going back to [41, 42], considers the fluid to be a determin-
istic dynamical system evolving in an infinite dimensional
phase space [43]. The dominant flow structures are under-
stood in terms of Exact Coherent Structures (ECS) and

the dynamical pathways connecting them. An ECS is a
(generically unstable) stationary, periodic, quasiperiodic,
or traveling wave solution of the hydrodynamic equations.
Each ECS possesses invariant manifolds that are dynam-
ical pathways connecting regions of phase space. A finite
set of ECS, together with their invariant manifolds, con-
stitutes a reduced-order but exact characterization of the
global phase space. Though each ECS is non-turbulent,
this representation is fully adequate for describing tur-
bulent flows, which appear as chaotic trajectories mean-
dering through the phase space and visiting the neigh-
borhoods of different ECS in a recurring fashion [44–46].
Therefore, the ECS and their invariant manifolds act as
an organizing template for the complicated spatiotempo-
ral motion of the fluid. In inertial fluids, control strate-
gies using this framework [47–49] are being explored for
suppressing or delaying the transition to turbulence and
reducing viscous dissipation. Recently, the approach has
also been extended to elasto-inertial [50] and viscoelastic
[51] turbulence.

However, similar insight is missing in active, low
Reynolds number fluids. Previous work on pre-turbulent
flows has focused on discovering stable solutions and
tracking equilibria through primary bifurcations [18, 34,
52, 53], while fully developed turbulence has been stud-
ied using coarse-grained statistical descriptions [27, 54–57]
that do not deal primarily with deterministic dynamics.

In this work, we take a first step toward developing a
dynamical systems picture of AN turbulence. Specifically,
we undertake a detailed study of ECS and heteroclinic
connections in a 2D channel in the pre-turbulent regime.
We find three coexisting attractors—two periodic orbits
and a low-dimensional chaotic set—and over 40 unsta-
ble ECS. Away from the attractors, the phase space has
complex global structure shaped by the unstable ECS and
their invariant manifolds. In particular, the ECS dictate
which of the three attractors a given flow configuration
will evolve toward.

Our results go beyond previous work on AN in that
they generate a reduced-order picture of the exact non-
linear dynamics: because the ECS framework is based on
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FIG. 1: Snapshots of three Exact Coherent Structures (ECS). The top plots show the nematic director field overlayed on the nematic
order parameter (color gradient), and the bottom plots show the velocity field overlayed on the vorticity. Left column: PO3a, a periodic

orbit with a 3-fold translational symmetry. Middle column: RPOu4, a relative periodic orbit that cycles between a vortex lattice (as
shown) and a nearly unidirectional, defect-less flow. Right column: RPO1c, a relative periodic orbit without obvious spatial structure.

See [73] for videos of each ECS.

global relationships among exact time-dependent struc-
tures, it does not involve phenomenological approxima-
tions or restrictions to locally linear analysis. Moreover,
our computation of unstable structures generates new in-
sight into the origin of stable structures and the dynami-
cal pathways leading to them. Finally, we show how this
understanding allows control of AN flows using minimal
external input.

Nematohydrodynamic Model.—We model the AN
in terms of the velocity u(r, t) and nematic alignment
tensor Q(r, t). The latter is symmetric and traceless
and can be parameterized as Q = q (n̂⊗ n̂− I/2), where
the scalar q and unit vector n̂ describe the degree and
direction of nematic ordering, respectively. The do-
main is a periodic 2D channel, parameterized as (x, y) ∈
[−L/2, L/2]× [0, h], with x the periodic coordinate. The
channel walls impose a no-slip boundary condition on u
and strong perpendicular anchoring on Q. Following ear-
lier work, we describe the dynamics using the hydrody-
namic equations

ρ (∂t + u ·∇) u = −∇p+ ∇ · (2ηE− αQ) ,

(∂t + u ·∇) Q + Q ·Ω−Ω ·Q = Γ H,

∇ · u = 0.

(1)

The first and last lines are the incompressible Navier–
Stokes equations, with p the pressure, E and Ω the strain
rate and vorticity tensors, and η the viscosity.The term
∇·(αQ) is the active dipolar density that drives the sys-
tem. Recent work has shown that the resulting energy
fluxes are dominated by viscous dissipation and inertial
energy transfer [59]; hence, we omit terms associated
with passive elastic stresses. The dynamics of Q consists
of: (1) advective and rotational coupling to the veloc-
ity and the vorticity, and (2) relaxation via the molec-
ular field H = A Q − BQTr

(
Q2
)

+ K∇2Q toward con-
figurations that minimize an effective free energy func-
tional. Here A , B, and Γ are material constants describ-
ing bulk properties of the nematic, and K is an elastic
constant characterizing the energy cost of spatial varia-
tions in Q. We focus on a single parameter set, working
in units such that ρ= η= 1, A = 0.1, B = 0.5, Γ = 0.34,

K = 0.04, and α=K(31h/2)2, and choose channel dimen-
sions L= 50 and h= 11 in these units. For comparison,
the nematic has an intrinsic length Ln =

√
K/A ' 0.63,

which is roughly the radius of a defect core, and activity
induces the length scale La =

√
K/α ' 0.71, which mea-

sures the balance between active and elastic stresses. We
also observe that the velocity magnitude is roughly 0.01–
0.1, which corresponds to Reynolds number Re ∼ 0.1–1.
Finally, we note that Ref. [34] and others incorporate ad-
ditional terms in Eqs. 1 that account for flow alignment,
which is the coupling between Q and the symmetric part
of the flow gradients. Here, we neglect these terms to
focus on the essential aspects of the problem [60, 61].

To emphasize the phase space approach, we rewrite
Eqs. 1 as Ẋ =F (X), where X =[u,Q] denotes the state
of the system. The associated flow map is f t(X0) =X0 +∫ t
0
F (X(τ))dτ , where X0 is the initial condition. Since

ECS are generically unstable, they cannot be com-
puted from direct time-dependent simulations; rather,
one searches for solutions to certain fixed point equations
(FPEs). The FPE for an equilibrium solution Xeq is just
F (Xeq) = 0, while any point XP on a periodic orbit (PO)
satisfies fT (XP) =XP, where T is the time period. Sim-
ilarly, a point XRP on a relative periodic orbit (RPO)
satisfies fT (XRP) = τx(`)XRP, where τx(`) is a stream-
wise translation by `. Hence, an RPO is a field profile
that recurs at a streamwise-shifted location after time T .
In phase space, an RPO densely covers the surface of a
two-torus. We also compute heteroclinic connections be-
tween pairs of ECS [3], which are trajectories that depart
the ‘source’ ECS along its unstable manifold and converge
to the ‘destination’ ECS along its stable manifold.

Symmetries.—Eqs. (1) are equivariant under the one-
parameter group of x translations, τx(`), as well as the
following x and y reflections:

σx[u, v,Q11, Q12](x, y) = [u,−v,Q11,−Q12](x, h− y),

σy[u, v,Q11, Q12](x, y) = [−u, v,Q11,−Q12](L− x, y).

If an initial condition is invariant under the action of a
subgroup of the group generated by (σx, σy, τx(`)), then
its future iterates will also respect the subgroup sym-
metries. Some of the ECS and heteroclinic connections
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FIG. 2: Left: Directed graph representation of the phase space, with ECS as nodes and heteroclinic connections as edges. Right: ECS
in a reduced 3D phase space (〈u〉, 〈v2〉, 〈Q11〉), where 〈.〉 denotes the instantaneous channel average. The channel average removes the
continuous translation symmetry [58], such that RPOs are closed orbits rather than tori in this representation. The laning equilibrium

(LAN) and POs have no net streamwise flow and therefore lie on the 〈u〉 = 0 plane. The right drifting (〈u〉 > 0) unidirectional equilibrium,
RPOs, and chaotic attractor have left drifting counterparts (〈u〉 < 0) (not shown).

fall into such invariant subspaces, while others possess
no symmetries (see Fig. 1). As our results below illus-
trate, such symmetries are powerful tools for analyzing
the phase space geometry.

Methods.—Our computations use the open-source
pseudospectral code Dedalus [63]. For channel geome-
tries, Dedalus implements a Fourier basis for the periodic
directions and a Chebyshev polynomial basis for the wall-
normal direction. All ECS and connections reported here
were computed using 256 Fourier modes and 64 Cheby-
shev modes, corresponding to a phase space dimension of
4× 256× 64 = 65536. To solve the FPEs, we use modified
Newton-Raphson algorithms [5]. Two key ingredients are
adaptive ‘hookstep’ step-size selection to improve global
convergence [65], and a matrix-free GMRES [66, 67] algo-
rithm for solving the linear BVP at each iteration. The
matrix-free methods are essential because they scale ef-
ficiently to the large problem dimensions encountered in
hydrodynamic simulations. Finally, finding a new ECS
requires a good initial guess for the FPE solver. Here,
we devise initial guesses using a combination of (1) the
global search method of [67] that samples arbitrary time-
dependent trajectories for approximate solutions to the
FPEs, (2) symmetry reduction [68], and (3) branch con-
tinuation in channel width; see supplemental material for
details.

Results.—In time-dependent simulations, the domi-
nant attracting state roughly passes through the following
sequence of transitions as activity is increased: (1) zero-
flow state; (2) defect-less, unidirectional flow; (3) vortex
lattice with motile defects (‘dancing disclinations’); (4)
spatiotemporal chaos (turbulence). Our results generally
agree with [34], which considers a similar AN model in
channel confinement. The main difference is that the sta-

ble vortex lattice is an RPO in our case and a PO in [34].
This difference appears to arise from the effects of flow
alignment, as we recover the results of [34] at sufficiently
large values of flow alignment.

In this article, we discuss the phase space struc-
ture at an intermediate non-dimensional activity,

A≡
√

αh2

K = 15.5, where the system has several co-

existing attractors and saddle-type ECS. While this sys-
tem is pre-turbulent, the phase space is quite rich,
and there are numerous heteroclinic connections between
ECS. Fig. 2 shows the dominant ECS in a reduced 3D
phase space, alongside several connections as a directed
graph. In addition to the unidirectional equilibria (UNI),
we also found a pair of laning equilibria (LAN), in which
the upper and lower halves of the channel flow in opposite
directions, ±u(y) = ∓u(h− y) and v= 0. Both UNI and
LAN are independent of x.

Periodic Orbits.—We found 11 unstable POs with k-
vortex lattice structure for 3≤ k≤ 8, which we label POkζ

for ζ = a, b, . . .. Each POkζ has 2k defect pairs and is
invariant under the action of Tk ≡ τx(L/k) and σxσy.
They are unstable versions of the previously reported sta-
ble ‘dancing disclinations’ solutions [34, 69].

Relative Periodic Orbits.—We found over 30 RPOs,
which we grouped based on their symmetries and relation
to each other in phase space. One family, labeled RPOuk

for 4≤ k≤ 9, cycles between a k-fold vortex-like structure
and a defect-free, nearly unidirectional flow. The time
period of these RPOs diverges as activity is decreased
from A= 15.5, which leads us to conjecture that they are
born as homoclinic orbits to the unidirectional equilib-
rium (UNI). The remaining RPOs are grouped based on
their (exact or approximate) discrete translational sym-
metry Tk, and labeled as RPOkζ for ζ = a, b, . . .. Some
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FIG. 3: Four connecting orbits in the reduced phase space obtained from the graph representation in Fig. 2. Such orbits can be
constructed for a pair of ECS if a directed path exists between them in the graph. Each orbit is formed by patching together heteroclinic

connections between successive ECS along the path using small perturbations. Top: Green shows the connection
LAN → RPOu8 → RPO4c → RPO4a. The spiral segment between LAN and RPOu8 appears to be a near pass to PO8a. Red shows two

connections: both starting with LAN → PO7a → PO3a and then perturbed either toward RPO3a (red) or σxσyRPO3a (grey). These last
segments highlight the two-dimensional unstable manifold of PO3a. Bottom: Blue shows the connection

UNI → RPOu4 → RPO4c → CA (chaotic attractor). See [73] for movies of each connection.

are left and right drifting versions of the POkζ family;
others appear more closely related to the RPOuk family
or lack distinct structure altogether. Under the action of
σxσy, an RPO is transformed into its ‘opposite drifting’
counterpart, changing the sign on the shift `.

Attractors.—We find three attractors, not counting
copies related by symmetry transformations. Two are
RPOs labeled RPO3a and RPO4a, and one is a chaotic
attractor labeled ‘CA’. RPO3a and RPO4a consist of 3
and 4-fold ‘rolling vortices’, each with left and right flow-
ing versions related by the transformation σxσy. CA is
a higher-dimensional set localized to a cigar-shaped re-
gion of the 3D phase space projection. Trajectories within
CA appear to be broken or frustrated versions of a 3-fold
‘dancing disclinations’ configuration, and the power spec-
trum contains broadband components, which suggests CA
is chaotic. We have confirmed this using the 0-1 test,
which takes a time series as input and outputs a binary
indicator for the presence of chaos; see [73].

Heteroclinic connections.—Individual ECS lend struc-
ture to localized regions of phase space. To understand
the global structure, we compute heteroclinic connections,
which are special dynamical pathways connecting ECS.
These reveal, for instance, the relationship between the
RPOuk family and the UNI equilibrium: by choosing a
perturbation with k-fold translational symmetry, a trajec-

tory starting on UNI passes directly onto RPOuk. There
are myriad other connections both inside and outside the
ECS families. Some involve relatively little change in
structure; for instance, PO3a and PO4b connect to their
left and right flowing RPO counterparts. Others dis-
play striking changes in structure along nontrivial paths
in phase space that, at first glance, seem unlikely to be
found by our search strategy. For example, some trajecto-
ries starting from a k-fold PO have their k-fold symmetry
destroyed before eventually landing on the unstable PO3a

and acquiring a 3-fold symmetry. In reality, these and
similar connections are not accidental: in most cases they
occur because the target ECS is stable in an invariant
subspace. PO3a, for example, is stable in the σxσy sub-
space. Nonetheless, there may be nontrivial connections
that have little to do with invariant subspaces and re-
quire more systematic search tools, such as the nonlinear
adjoint method [70]. See Tables S1-S10 for a list of ECS
and heteroclinic connections [73].

Directed graph representation.—In experiments,
one might wish to direct the system toward a specific
attractor. In fact, our framework allows for more com-
plex control objectives involving unstable ECS, which is
a necessary prelude to engineering turbulent AN flows,
where all ECS are unstable. The centerpiece of this con-
trol capability is a reduced-order representation of the
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phase space in terms of a directed graph, in which ECS
are nodes and heteroclinic connections are edges (Fig. 2).
This representation uncovers nontrivial relationships in
phase space, which can be exploited to induce desired
transitions using minimal external control input. For in-
stance, such methods have previously been used to dis-
cover low-energy dynamical channels forming an ‘inter-
planetary superhighway’ in the solar system [71]. Fig. 3
provides four examples of connecting orbits between dis-
tant ECS that were found by patching together hetero-
clinic connections using small perturbations.

Conclusion.—Successful characterization and control
of far-from-equilibrium dynamics is a key step in realiz-
ing the promise of active matter. We have employed the
Exact Coherent Structure approach to obtain a tractable,

reduced-order representation of a model AN system. At
higher activities, this approach can lead to a better un-
derstanding of transitional turbulence in active fluids. In
experiments, the reduced order representation can be ex-
ploited by applying external vorticity [72], light [36, 37],
or pressure [53] modulation to reach and maintain other-
wise inaccessible spatiotemporal states.
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I. SUPPLEMENTARY MATERIAL

A. Dedalus implementation

Dedalus implements a Fourier basis in the periodic direction (x coordinate) and a Chebyshev basis in the wall normal
direction (y coordinate). For computing ECS, we use Nx = 256 Fourier and Ny = 64 Chebyshev modes, together with
a dealiasing factor of 3/2. Nx was chosen to accommodate the characteristic length scale set by the observed ECS – an
ECS with 9-fold translation symmetry, such as RPOu9, would be allotted about Nx/9 Fourier modes per each of the 9
unit cells. Assuming 32 Fourier modes are required to resolve the characteristic scales within such a unit cell, we would
need 288 Fourier modes. To keep simulations tractable, we use instead Nx = 256 and check empirically that using
larger Nx does not significantly change our results. Similarly, for Ny we observe that 32 modes are adequate in many
cases, but fail to resolve all unstable directions in the laning equilibrium (labeled ‘LAN’; see table S3). Therefore, we
use Ny = 64 for computing ECS.

For the initial sweeps of the Newton-Rhapson searches and for other exploratory runs, we use Nx = 128 and Ny = 32.
We assume this lower resolution is sufficient to uncover the majority of relevant structures, which can then be verified
in higher resolution simulations.

For timestepping, we used the ‘RK222’ timestepper provided by Dedalus, which is a second-order, two-step, im-
plicit/explicit Runga-Kutta method. The nominal timestep was dt = 0.05, adjusted slightly for each ECS to al-
low for an integer number of timesteps. This value of dt is significantly smaller than the limit imposed by the
Courant–Friedrichs–Lewy (CFL) condition for stability, which typically varies approximately between 1 and 10, de-
pending on the ECS.

B. Computation of ECS

1. Modified Newton-Raphson algorithm

Computation of an ECS amounts to solving the N -dimensional, nonlinear, algebraic system defined by the corre-
sponding fixed point equation. Here N is the number of degrees of freedom in the spectral representation, and is usually
large – in our case N = 65536, and in 3d turbulent flows N may exceed 106.

At the time of writing, Dedalus can natively solve only 1d nonlinear BVPs, corresponding to the fixed point equation
for 1d equilibria. To compute POs and RPOs as well as any 2d ECS, we implement a modified Newton-Raphson
iteration. This method has been successful in ECS calculations of inertial fluids [S5]. The core element of the standard
Newton-Raphson method is the successive solution of linear approximations of the nonlinear manifold defined by the
fixed point equation, until convergence is achieved. In the best-case scenario, convergence sufficiently near the fixed
point is quadratic; however, this feature may hold only very close to the fixed point, and in general little can be said
about global convergence. Moreover, direct solution of the linear approximating equation quickly becomes impractical
for high-dimensional systems, as doing so requires linear algebraic operations on N ×N matrices.

Following earlier work on inertial fluids [S5], we address these limitations with two modifications to the standard
Newton-Raphson iteration. First, we approximate the solution of the linear system using GMRES, which solves the
system in a low-dimensional Krylov subspace. The minimum subspace dimension required to obtain satisfactory results
is independent of N , and usually quite small. In our case, we find satisfactory results using a subspace dimension as
small as 20. Second, we constrain the step size of each Newton iteration by imposing a fixed norm ρ on the solution of
the linear approximating equation. This improves global convergence by avoiding the situation where the step would
otherwise extend past the region in which the linearization is valid. The linear system is then replaced by a least-squares
problem, which can also be solved in a Krylov subspace. Note that this is distinct from first solving the linear system
and then fixing the norm after the fact by scalar multiplication. The latter is sometimes called a damped Newton
method, and performs worse than the constrained optimization because the direction of the step is chosen based on
the unconstrained system.

We use an adaptive approach to step size selection, testing various step sizes until the error on the nonlinear problem
decreases from the previous iterate. Using a l2 norm on the spectral coefficients, this amounts to a step size typically
O(10−2–10−1), but occasionally as small as O(10−12).

With the same l2 norm, we carry out the Newton iterations until the error of the fixed point equation is ≤ 10−12.
The exception is PO8a, for which the residual could not be decreased past 10−7. Possible explanations are that PO8a

is simply too unstable for a single-point shooting method, or that it is not strictly a PO—for example, it could be a
very thin invariant torus. Finally, an ECS is considered to be invariant under a group operation g if the l2 norm of the
difference between the ECS and its transformation under the group operation is less than 10−10.

It is worth noting that we do not observe quadratic convergence even very close to a fixed point—rather, the error
after each iteration decreases by a constant factor, typically around 10. We conjecture that this happens due to the
continuous translational symmetry in x, which renders the fixed point equation degenerate.
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2. Finding initial guesses

While the adaptive step size of the Newton-Raphson iteration improves global convergence, good initial guesses are
still required to catalogue all the dynamically relevant ECS. Besides being close to an ECS, initial guesses must not
exclude any dynamically important regions of the phase space, including attractors as well as repelling regions in which
a trajectory may linger long enough to be physically relevant; examples of the latter are provided below. Here we
employ a multifaceted search strategy to establish with reasonable confidence that all dynamically relevant ECS have
been catalogued.

Most ECS were discovered using initial guesses from time-dependent trajectories, which naturally favor the most
dynamically relevant ECS. The initial guesses were determined by 1) choosing a random state X(t0) from an initial
set of trajectories, and 2) scanning for period T (up to a given threshold) and shift ` that minimize the residual
||τ`X(t0 + T )−X(t0)||2. The resulting (X(t0), T , `) ideally constitute a ‘near pass’ to an ECS.

The initial set of trajectories themselves were generated using several methods:

� ‘Quenching’ from states that are physically relevant at other parameter values–for example, stable equilibria,
POs, and RPOs; or snapshots from long-time turbulent trajectories. As an example, initial conditions derived
from turbulent snapshots at large activity manage to uncover all three attractors at the value α = 15.5 considered
here.

� Trajectories falling within dynamical equivariance classes. Some ECS are unstable in the full space, but stable
or nearly stable in a symmetry subspace, e.g., T3, the subspace of solutions possessing three-fold translational
symmetry. Taking initial guesses from within this subspace will increase the probability of finding such ECS.
Because the equivariance classes are intrinsic to the dynamics (and hence, the subspaces are invariant, as explained
in the main text), ECS with the corresponding symmetries are important for mapping out the global phase space
geometry–many heteroclinic connections, for instance, fall entirely within a symmetry subspace.

� Trajectories following unstable manifolds of known ECS. Since heteroclinic orbits are contained in the intersections
of unstable and stable manifolds of different ECS, initializing trajectories on the unstable manifold can uncover
globally distant, but dynamically connected regions of phase space.

Hundreds of instances of the Newton solver were run along such trajectories. In some cases a significant percentage
failed to converge within a time limit of about 3-5 days. However, usually at least 10% converged, sometimes much
more. We continued searching in this way until discovering a new ECS became infrequent (. 1 new ECS per 100 solver
instances).

A smaller number of ECS were computed by parameter continuation, i.e., initializing the solver using a known ECS
from a nearby set of parameters. We found it particularly effective to use the domain width L as the continuation
parameter. Given a k-fold symmetric ECS, this continuation method can be used to look for (k ± 1)-fold ECS with
similar structure. The idea is the following: because the dynamics is equivariant under translations in x, a k-fold ECS
can be decomposed into k unit cells with identical time evolution, such that the dynamics of a single unit cell on a
domain of width w/k completely characterizes the full, k-fold ECS. Then, if one can use parameter continuation to
shrink or grow the domain and obtain corresponding ECS with width w/(k + 1) or w/(k − 1), these can be stitched
back together to obtain (k ± 1)-fold ECS in the full space. In this way, for example, we were able to discover PO5b

starting from PO4b.

3. Linear stability

Linear stability is defined in terms of the linear operator that governs the dynamics of a small perturbation δX
about an ECS. For equilibria, the linear operator is the Jacobian matrix, and its eigenvalues λn describe the evolution
of small perturbations δYn along the corresponding eigenvector Yn via δYn(t) ∼ eµntδYn(0). An unstable equilibrium
therefore has at least one positive eigenvalue. For a PO, the linear operator is the monodromy matrix [S4] M that,
for a reference point X0 on the ECS, maps a small perturbation δX onto the corresponding perturbation δX ′ after
evolving for a single period T . For an RPO, there is the additional step of shifting back to the frame of the initial
state, i.e., translating the final state by −`. In terms of the flow map φ(X,T ), we have

δX ′ = τ−`φ(X + δX, T )−X (S2)

≡MδX (S3)

It can be shown that the eigenvalues of M, referred to as Floquet multipliers, do not depend on the reference point.
In our system, POs and RPOs have at least two multipliers equal to 1, one for a shift along the orbit and one for a
pure translation in x. The remaining multipliers determine the asymptotic behavior of a given perturbation, at least
in the region where the linearization is valid. If all the multipliers are ≤ 1, we say the ECS is asymptotically stable. If
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at least one multiplier is strictly greater than 1, we say the ECS is unstable because generic perturbations (as might
arise due to experimental noise or finite-precision arithmetic) grow exponentially.

Computationally, we obtain the stability of equilibria using the eigenvalue solver provided by Dedalus, which can
handle 1d equilibria. For everything else, we again use Krylov subspace methods–this time calculating the leading
eigenvalues of M within a 60-dimensional Krylov subspace. The action of M on a vector Y is calculated by fixing the
l2 norm of Y to 10−7 and applying Eq. S3. We use the value 10−7 because it is sufficiently small to ensure the action
of φ on δX is linear, but large enough to avoid round-off error.

Tables S1–S2 list the real and imaginary parts Re(λ) and Im(λ) of the largest multiplier for each POs and RPOs.
One can equivalently describe the behavior of perturbations by δXn(t) ∼ eµntXn(0), where µn is called the Floquet
exponent. The largest exponent is also listed in same tables. Table S3 lists the real and imaginary parts of the largest
eigenvalue µ of the Jacobian evaluated at the various equilibria.

C. Computation of heteroclinic connections

Finding heteroclinic connections proceeds naturally from the global search strategy mentioned above. In the process of
following time-dependent trajectories—especially those along the unstable manifold of an ECS—candidate connections
can be identified as those passing nearby an ECS in the 3D phase space projection.

To quantitatively check convergence towards the candidate ‘target ECS’, we scan for the closest approach of the
connecting orbit to any one point on the target ECS. Because of the continuous translational symmetry, we must
recognize a situation where the connection approaches an x-translated version of the original ECS. To do so, we imbue
the phase space with a metric that ‘reduces’ the symmetry by replacing the distance between two states X1 and X2

with the smallest distance between X1 and any of the continuously translated copies of X2:

Distance between X1 and X2 = mins||τsX2 −X1|| < ε (S4)

This number is given in the rightmost column of Table S10 for each connection. We have used ε = 10−3 as the threshold
for convergence in (S4). (See Ref. [S3] for application of a similar convergence criterion for computing heteroclinic
connections.)

This search strategy allows for easy discovery and verification of connections that end on an attractor. However,
some candidate connections appear in time-dependent simulations only as inconclusive near-passes to an unstable ECS,
e.g., local minima in the distance metric (S4) that do not quite fall within the threshold ε. We have found that such
a near pass often occurs because the trajectory approximately evolves in an invariant subspace (corresponding to a
discrete symmetry), and the candidate target ECS is stable in that subspace. Then, the lack of conclusive numerical
convergence occurs because the subspace is unstable under symmetry-breaking perturbations, which could arise in
numerical simulations due to round-off error. To circumvent this problem, we configure the time-dependent solver to
remain within the symmetry subspace for all time, by projecting out any symmetry-breaking components that may
accumulate from round-off error. To enforce discrete translational symmetries Tk, we shrink the domain size by a
factor of k. The convergence criterion (S4) can then be verified within the target precision ε = 10−3. In this way, we
have discovered several heteroclinic connections terminating in ECS that are unstable in the full space, but stable in
an invariant subspace.

Connections to the chaotic attractor (CA) are difficult to verify using a direct distance metric, as the manifold
defining CA is not known in its entirety. One possibility is to compute the smallest distance between a candidate
heteroclinic orbit and a reference trajectory within CA. However, we have not had success with this approach, possibly
because the reference trajectory would have to be extremely long to adequately sample the set. For example, the closest
approach we could find for the connection RPO4c → CA was about 0.015.

Instead, we verify that the asymptotic behavior of a candidate connection matches a few key properties of a reference
trajectory defining the attractor—specifically, that it contains an attracting set, is chaotic, has the same average number
of defects, and occupies roughly the same region of phase space (closest approach < 0.05); see the following section for
details on how these properties are established for a set of reference trajectories.

D. Test for chaos

One of the three attractors is a chaotic set–labeled ‘CA’ for ‘chaotic attractor’–that occupies an oblong region of
the 3D phase space projection (Fig. S1). It is structurally stable in the sense that it is robust against variation in
activity, grid resolution, and timestep. Our evidence that the set is an attractor comes from long-time trajectories that
remain localized to the same region of phase space and exhibit similar properties, such as average number of defects.
Depending on the grid resolution and timestepping, the duration of these reference trajectories range from 106 time
units (Nx = 256, Ny = 64, dt = 0.05) to 108 time units (Nx = 64, Ny = 32, dt = 1.0).
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FIG. S1:

Left: A typical trajectory within the chaotic attractor (CA). Right: An illustrative snapshot along the trajectory. The top
right shows the nematic director field (black lines) overlayed on the nematic order parameter field (color gradient), and the

bottom right shows the velocity field (black arrows) overlayed on the vorticity (color gradient).

To establish that the set is chaotic, we apply the 0-1 test [S1,S2]. The test takes a time series φ(n) as input and uses
it to drive the 2-dimensional system

p(n+ 1) = p(n) + φ(n) cos cn (S5)

q(n+ 1) = q(n) + φ(n) sin cn (S6)

where c ∈ (0, 2φ) is fixed. If φ(n) is sufficiently long to sample the entire attractor, then the behavior of p(n) and
q(n) qualitatively distinguish between regular and chaotic dynamics: for regular dynamics, p(n) and q(n) are typically
bounded, whereas for chaotic dynamics, they typically behave asymptotically as a 2D Brownian motion. In the latter
case, p(n) and q(n) are unbounded, and their mean-squared-displacement (MSD) scales as n. Except at certain isolated
values of c, which correspond to resonances in φ(n), the two cases can be distinguished by computing the correlation κc
between linear growth and the MSD: regular and chaotic dynamics lead to κc = 0 and κc = 1, respectively. Therefore,
one can test for chaos in the original dynamics using a single number κc.

Here we present the results for Nx = 128 Fourier modes, Ny = 32 Chebyshev modes, and timestep dt = 0.25. Similar
results were obtained for both higher and lower resolution simulations. We choose φ(n) to be the channel-averaged
x-velocity 〈U〉, sampled at fixed intervals ∆t = 103 from a trajectory of duration T ≈ 7 × 106. Following Ref. [S2],
we use a modified MSD that regularizes the linear scaling with n by subtracting out an oscillatory component. To
avoid the bias that would result from inadvertently choosing c near a resonance, we compute the median of κc for 100
randomly selected values of c in the interval (π/5, 4π/5). Other details of our implementation follow Ref. [S2]. In the
end, we find κ = median ({κc}) = 0.9985, indicating chaotic dynamics. To test that our implementation is correct, we
repeated the same procedure for φ(n) sampled from a quasiperiodic attractor that appears at larger activity. Here we
find κ = 0.01723, which is close to the expected κ ≈ 0.

E. Homoclinic bifurcation

Branch continuation of RPOu4 towards lower activity suggests that the ECS in this family are created by successive
infinite-period bifurcations that are homoclinic to the unidirectional equilibrium (labeled ‘UNI’). Visually, this setup
is suggested by the fact that RPOu4 passes very close to UNI along its orbit. Near such a bifurcation, the period
diverges as T ∼ z−1/2, where z is the bifurcation parameter. In our case, the activity number A is the square root
of the bifurcation parameter α, so we expect a scaling T ∼ A−1. Because RPOu4 is stable just above the conjectured
bifurcation, we have been able to check this scaling over 2 decades, from T ∼ 103 to T ∼ 105. The evidence is indeed
consistent with the T ∼ A−1 scaling (Fig. S2). To complete the picture, one should identify all the solutions involved
in the bifurcation – here, at least one other solution would be required in addition to UNI and RPOu4, either an
equilibrium or a traveling wave. We leave such an investigation to future work.
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FIG. S2: RPOu4 period scaling with non-dimensional activity parameter A
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II. DATA TABLES

Tables S1–S9 summarize all the ECS and their properties, including their linear stability in the full phase space and
relevant symmetry subspaces. The family of RPOs that are nearly homoclinic to the unidirectional flow are notated as
RPOuk for each Tk symmetry represented. All the other RPOs and the POs are named and grouped according to their
exact or approximate translational symmetry Tk. This categorization includes certain ECS that break a translational
symmetry to a small degree, e.g., by deforming one of the otherwise k-fold vortices. The POs and RPOs within a group
are separately ordered by lowercase letters a, b, c, ... For example, RPO4a and RPO4b are the first and second RPOs
in the T4 grouping. The grouping RPO1x corresponds to RPOs without any discrete translational symmetry, except
for the trivial case where the shift equals the channel width.

Each RPO also has an opposite-shifted counterpart, obtained by the transformation σxσy along with flipping the
sign of the shift `. RPO4c also has x-reflected counterpart, i.e., σxRPO4c is also an ECS with the same period and
shift.

ECS T Symmetries Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

PO3a 343.09 T3, σxσy 1 0.0824 0 1.3268 0

PO4a 974.68 T2, T4, σxσy 5 0.1114 0 2.9611 0
PO4b 422.85 T2, T4, σxσy 8 0.5020 0 8.3544 0
PO4c 587.23 T2, T4, σxσy 13 0.6703 0 51.2255 0
PO4d 758.53 T2, σxT4, σxσy 14 1.1904 0 8345.4 0

PO5a 1137.55 T5, σxσy 14 0.5155 0 352.2035 0
PO5b 538.75 T5, σxσy 15 1.0473 0 282.1622 0
PO5c 621.56 T5, σxσy 25 1.0437 0 656.75 0

PO6a 1274.17 T2, T3, T6, σxσy 6 0.5170 0 725.8385 0

PO7a 1234.85 T7, σxσy 9 0.5921 0 1497.7805 0.0005

PO8a* 970.46 T2, T4, T8, σxσy

*residual = 3.4× 10−7

TABLE S1: List of Periodic orbits (POs). Nu is the number of unstable directions in the full phase space. λ is the
largest Floquet multiplier, and µ is the corresponding Floquet exponent.
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ECS T ` Symmetries Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

RPOu4 738.19 12.936 T2, T4, σxT8 13 0.3045 0.4088 -9.3933 1.1703
RPOu5 607.38 20.321 T5, σxT2 6 0.0579 0.1550 0.8369 1.1487
RPOu6 666.18 -3.642 T2, T3, T6, σxT4 6 0.0243 0.3703 -0.9184 0.7347
RPOu7 812.02 31.589 T7, σxT2 8 0.0816 0.3221 -1.6780 0.9746
RPOu8 986.91 22.221 T2, T4, T8 10 0.4848 0.1976 -44.329 111.10
RPOu9 1137.00 27.373 T3, σxT2, σxT6 15 0.7235 0.2313 -3257.0 1831.4

RPO1a 84.93 -10.329 - 6 0.1259 1.8204 0.0276 1.1125
RPO1b 399.03 6.564 - 4 0.6265 0 12.182 0
RPO1c 518.89 21.262 - 7 0.3445 0.3268 -0.7449 5.9276
RPO1d 455.57 37.527 - 5 0.2468 0.4503 -1.4228 2.7292
RPO1e 276.37 -5.080 - 2 0.0175 0.4852 0.2391 1.0219
RPO1f 678.75 3.558 - 3 0.0999 0 1.9707 0
RPO1g 383.31 9.822 - 2 0.0696 0.0842 1.2382 0.4142

RPO2a 108.35 17.870 σxT2 2 0.0281 1.6527 -0.2249 1.0061
RPO2b 173.91 6.426 T2 4 0.1446 0.7852 0.2621 1.2589
RPO2c 178.34 12.282 T2, σxT4 6 0.2932 1.3412 -1.2346 1.1496
RPO2d 641.01 25.114 T2 14 0.5296 0 29.818 0
RPO2e 494.88 -3.449 T2 14 0.8775 0 76.890 0
RPO2f 576.71 21.566 T2 19 0.7026 0 57.511 0

RPO3a 357.45 2.296 T3 0 -0.0546 0.1859 0.6478 0.5074
RPO3b 636.45 -26.361 T3, σxT2, σxT6 12 0.6290 0.4936 -54.787 0
RPO3c 262.57 -9.542 T3, σxT2, σxT6 8 0.2676 1.1544 -2.0065 0.2225
RPO3d 403.72 43.284 - 7 0.4339 0 5.7639 0

RPO4a 372.33 8.423 T2, T4 0 -0.0314 0 0.8898 0
RPO4b 382.89 8.858 T2, T4 3 0.0550 0 1.2345 0
RPO4c 418.40 -1.240 T2, T4 7 0.1395 0.7401 -1.7904 0.0808
RPO4d 389.25 9.262 T2 3 0.1137 0 1.5570 0
RPO4e 387.90 9.166 - 4 0.0831 0 1.3802 0

RPO5a 931.67 22.975 T5 7 0.2607 0.0167 11.206 1.7531
RPO5b 757.66 44.652 T5 14 0.1948 0.0663 3.8327 2.1069
RPO5c 743.36 24.607 T5 9 0.1830 0.2157 -0.1262 3.8955
RPO5d 1653.64 -2.411 T5 13 0.2203 0.1900 -38.225 0
RPO5e 1613.55 45.759 T5 9 0.2043 0.0338 23.094 14.009

TABLE S2: List of Relative periodic orbits (RPOs). Nu is the number of unstable directions in the full phase space.
λ is the largest Floquet multiplier, and µ is the corresponding Floquet exponent.

ECS ID Symmetries Nu Re(µ) Im(µ)

UNI T∞, σx 8 0.0111 -0.0193
LAN T∞, σxσy 7 0.0108 0

TABLE S3: List of Equilibria (EQ). T∞ means the solution is invariant under arbitrary translations in x. Nu is the
number of unstable directions in the full phase space. µ is the largest eigenvalue of the Jacobian evaluated at the

equilibria.
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ECS T Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

PO3a 343.09 0 -0.0136 0 0.9545 0
PO4a 974.68 3 0.1114 0 2.9611 0
PO4b 422.85 5 0.1946 0 2.2766 0
PO4c 587.23 6 0.5577 0.5350 -26.436 0
PO5a 1137.08 6 0.5143 0 346.57 0
PO5b 538.75 7 0.4177 0 9.4928 0
PO5c 621.56 12 0.4437 0.0819 13.764 7.6809
PO6a 1274.17 4 0.5170 0 725.86 0
PO7a 1234.85 5 0.5921 0 1497.8 0

TABLE S4: List of ECS invariant under σxσy. Nu is the number of unstable directions in the corresponding invariant
subspace. Here, λ and µ are computed by restricting perturbations within that subspace.

ECS T ` Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

RPOu5 607.38 20.321 2 0.0415 0.1367 0.8684 0.9497
RPOu7 812.02 31.589 4 0.0291 0.1228 0.6873 1.0634
RPOu9 1137.00 27.373 6 0.7065 0.2517 -2962.1 849.30
RPO2a 108.35 17.870 0 -0.1018 2.1731 -0.6322 0.6343
RPO3b 636.45 -26.361 6 0.5839 0.2417 1.3397 41.092
RPO3c 262.57 -9.542 4 0.2676 1.1544 -2.0065 0.2225

TABLE S5: List of ECS invariant under σxT2. Nu is the number of unstable directions in the corresponding invariant
subspace. Here, λ and µ are computed by restricting perturbations within that subspace.

ECS T ` Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

UNI - - 4 1.11 -1.93 - -
LAN - - 3 1.01 0 - -

PO4a 974.68 - 3 0.0956 0.3223 -2.5387 0
PO4b 422.85 - 6 0.5020 0 8.3544 0
PO4c 587.23 - 7 0.6703 0 51.225 0
PO6a 1274.17 - 3 0.5170 0 725.84 0

RPOu4 738.19 12.936 5 0.3045 0.4088 -9.3933 1.1703
RPOu6 666.18 -3.642 2 0.0196 0.0513 1.0733 0.3817
RPOu8 986.91 22.221 4 0.4632 0.2364 -66.706 69.925
RPO2b 173.91 6.426 2 0.1296 1.4777 -1.0534 0.6779
RPO2c 178.34 12.282 2 0.2932 1.3412 -1.2346 1.1496
RPO2d 641.01 25.114 8 0.5255 0.0749 25.758 13.418
RPO4a 372.33 8.423 0 -0.0314 0 0.8898 0
RPO4b 382.89 8.858 1 0.0550 0 1.2345 0
RPO4c 418.40 -1.240 3 0.1288 0.7509 -1.7138 0
RPO4d 389.25 9.262 2 0.0541 0.0901 1.1591 0.4243

TABLE S6: List of ECS invariant under T2. Nu is the number of unstable directions in the corresponding invariant
subspace. Here, λ and µ are computed by restricting perturbations within that subspace.
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ECS T ` Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

UNI - - 3 1.111 -1.93 - -
LAN - - 3 0.97 0 - -

PO3a 343.09 - 1 0.0824 0 1.3268 0
PO6a 1274.17 - 2 0.3178 0 57.330 0

RPOu6 666.18 -3.642 0 -0.1217 0.4337 -0.4303 0.1111
RPOu9 1137.00 27.373 4 0.7235 0.2313 -3257.0 1831.4
RPO3a 357.45 2.296 0 -0.1819 0 0.5220 0
RPO3b 636.45 -26.361 4 0.6290 0.4936 -54.787 0
RPO3c 262.6 -9.542 2 0.1451 0.5784 0.0762 1.4619

TABLE S7: List of ECS invariant under T3. Nu is the number of unstable directions in the corresponding invariant
subspace. Here, λ and µ are computed by restricting perturbations within that subspace.

ECS T ` Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

UNI - - 2 0.87 -1.36 - -
LAN - - 2 1.01 0 - -

PO4a 974.68 - 1 0.0812 0 2.2060 0
PO4b 422.85 - 3 0.5020 0 8.3544 0
PO4c 587.23 - 3 0.6703 0 51.226 0

RPOu4 738.19 12.936 1 0.0492 0.4256 -1.4377 0
RPOu8 986.91 22.221 2 0.2987 0.2411 -13.792 13.166
RPO4a 372.33 8.423 0 -0.0314 0 0.8898 0
RPO4b 382.89 8.858 1 0.0550 0 1.2345 0
RPO4c 418.40 -1.240 0 -0.0227 0.7509 -0.9092 0

TABLE S8: List of ECS invariant under T4. Nu is the number of unstable directions in the corresponding invariant
subspace. Here, λ and µ are computed by restricting perturbations within that subspace.

ECS T ` Nu Re(µ)× 102 Im(µ)× 102 Re(λ) Im(λ)

UNI - - 2 1.09 -1.64 - -
LAN - - 1 1.08 0 - -

PO5a 1137.08 - 1 0.3929 0 87.1113 0
PO5b 538.75 - 3 1.0473 0 282.162 0
PO5c 622.08 - 3 1.0436 0 659.985 0

RPOu5 607.38 20.321 0 -0.0134 0.5172 -0.9220 0
RPO5a 931.67 22.975 1 0.2322 0 8.7028 0
RPO5b 757.66 44.652 2 0.0471 0.3680 -1.3410 0.4947
RPO5c 743.36 24.607 1 0.1169 0 2.3839 0
RPO5d 1653.64 -2.411 1 0.2203 0.1900 -38.225 0
RPO5e 1613.55 45.759 1 0.1769 0 17.377 0

TABLE S9: List of ECS invariant under T5. Nu is the number of unstable directions in the corresponding invariant
subspace. Here, λ and µ are computed by restricting perturbations within that subspace.
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Source ECS Target ECS Verified in subspace?
(Y/N)

du1 Nu2 dintersection Residual

UNI RPOu4 N 16 13 3 2.92E-05
UNI RPOu5 Y (T5) 16 6 10 7.36E-07
UNI RPOu6 Y (T6) 16 6 10 4.64E-06
UNI RPOu7 Y (T7) 16 8 8 4.22E-05
UNI RPOu8 Y (T8) 16 10 6 6.58E-06
UNI RPOu9 Y (T9) 16 15 1 1.78E-06
UNI RPO2a Y (σxT2) 16 2 14 1.22E-04
UNI σxσy RPO2a Y (σxT2) 16 2 14 1.69E-04

LAN PO3a Y (σxσy) 14 1 13 4.15E-04
LAN PO6a Y (T6) 14 6 8 3.01E-05
LAN PO7a Y (T7) 14 9 5 8.96E-05
LAN RPOu5 Y (T5) 14 6 8 3.92E-06
LAN RPOu8 Y (T8) 14 10 4 5.89E-06

RPOu4 RPO3a N 14 0 14 1.31E-04
RPOu4 RPO4a Y (T2) 14 0 14 1.40E-04
RPOu4 σx RPO4c Y (T4) 14 7 7 6.93E-05
RPOu5 RPO3a N 7 0 7 1.61E-04
RPOu6 RPO3a N 7 0 7 4.28E-05
RPOu6 RPO4a Y (T2) 7 0 7 1.38E-04
RPOu7 RPO3a N 9 0 9 8.45E-05
RPOu7 RPO2a Y (σxT2) 9 2 7 6.64E-04
RPOu8 RPO3a N 11 0 11 6.35E-05
RPOu8 RPO4a Y (T2) 11 0 11 1.13E-04
RPOu8 σx RPO4c Y (T4) 11 7 4 8.19E-05
RPOu9 RPO3a Y (T3) 16 0 16 3.94E-05
RPOu9 RPOu6 Y (T3) 16 6 10 6.34E-05

PO3a RPO3a Y (T3) 2 0 2 5.46E-05
RPO3c RPO2a Y (σxT2) 9 2 7 1.14E-04
RPO3c σxσy RPO2a Y (σxT2) 9 2 7 1.19E-04

PO4a RPO3a N 6 0 6 4.10E-05
PO4a RPO4a N 6 0 6 1.43E-04
PO4a σxσy RPO4c Y (T4) 2* 0* 2* 8.45E-05
PO4b RPO4a Y (T4) 9 0 9 1.28E-04
PO4c PO3a Y (σxσy) 14 1 13 1.85E-03
PO4c RPO3a N 14 0 14 8.83E-05
PO4c RPO4a Y (T4) 14 0 14 1.30E-04
PO4c RPO4c Y (T4) 14 7 7 3.05E-05
RPO4c RPO3a N 8 0 8 1.38E-04
RPO4c RPO4a N 8 0 8 1.47E-04

PO5a PO3a Y (σxσy) 15 1 14 5.94E-04
PO5b RPO3a N 16 0 16 3.09E-04
PO5b RPOu5 Y (T5) 16 6 10 1.08E-04
PO5c RPOu5 Y (T5) 26 6 20 9.54E-05
RPO5b RPOu5 Y (T5) 15 6 9 9.19E-05
RPO5c RPOu5 Y (T5) 10 6 4 8.87E-05

*In the T4 subspace

TABLE S10: Heteroclinic connections. Except for UNI→ RPOu4, the target ECS of all connections is stable either in
the full space or a symmetry subspace. In the latter case, the symmetry subspace is given in column 3. In columns 4
and 5, du1 is the dimension of unstable manifold of the source ECS, and Nu2 is the number of unstable direction of
the target ECS, both computed in the full phase space. dintersection = du1 −Nu2 is the expected dimension of the

heteroclinic connection.
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