How to Read the "Mind" of a Neural Network

Thomas Walton, Advisor: Mohammad R. Hasan

Objective

- · Deep Learning (DL) is a powerful tool for solving computer vision problems, but has shortcomings that are not well understood
- · Algorithmic bias plagues the decision-making process of DL models, leading to nongeneralizable results and limited capability

- A CNN analyzing an image of a cat · A Convolutional Neural Network (CNN) is a DL model used to learn the semantic identity (category) of data
- · CNNs are intelligent if they can generalize knowledge learned from data onto novel, unseen data
- · Algorithmic bias limits the capability of CNNs to learn

- · Use Class Activation Maps (CAMs) to read the "mind" of a CNN
- · Create ScoreCAM maps to make these CAMs human
- readable · Leverage this analysis to

A ScoreCAM map of a dandelion

- discover algorithmic bias

The decision-making process is filtered through layers of neurons, each contributing to the final prediction

Scientific Research Questions

· SRQ1: What are the reasons for a vision model to fail in its predictions?

necessarily mean that it recognizes the object in the image? If not, then

· SRQ2: When a vision model identifies an object accurately, does it

Methodology

· Analyze ScoreCAM maps of a scratch trained model and a transfer learning model

Results

SRQ1: Both ResNet-50 and MobileNetV3 had similar downfalls

CNNs can make mistakes for various reasons, often due to confusion with how to process images outside the norm

- Conclusions
- · On their own, SRQ1 and SRQ2 tell only part of the story of why algorithmic bias occurs

why?

· When failures from SRQ1 are combined with suspicions from SRQ2, bias is exposed

Adding unexpected objects lead to misclassification on images where the model was once confident

- By adding objects that lead to failure onto images where the vision model was confident, weaknesses in CNNs become apparent
- The lack of adaptability from this vision model implies that while it may be good at classifying flowers, it is not truly learning intelligent representations

Despite being correct in their predictions, both models used shortcuts or other objects to draw conclusions

While the CNN correctly classifies the image, when broken up, trouble arises

UNIVERSITY of NEBRASKA-LINCOLN